
G2 Neural Network Engine
User’s Guide

Version 5.1 Rev. 0

G2 Neural Network Engine User’s Guide, Version 5.1 Rev. 0

June 2016

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2016 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC131-510

Contents
Preface vii

About this Guide vii

Audience viii

Conventions viii

Related Documentation x

Customer Support Services xii

Chapter 1 Introduction to GNNE 1

Introduction 1

GNNE Features 2
Data Processing 3
Model Execution 3
Neural Network Model Retraining 3
Neural Network Model Validation 4
File Operations 4
Remote Process Management 4
Online Interaction with NOL Studio 5

Module Integration 6

GNNE Objects 7
Data Objects 7
Data Controls 8
Neural Network Objects 9
NOL Studio Objects 10

Accessing the GNNE API 11

Chapter 2 Integration of GNNE and NOL Studio 13

Introduction 13

Integrated Module Hierarchy 14

Connecting NOL Studio and GNNE 14
Launching NOL Studio from G2 15
Connecting G2 from NOL Studio 16

Accessing the Integration API 17
iii

Actions for Data Exchange and Parameter Passing 17

Chapter 3 Object Reference 19

Introduction 20

Data Objects 22
Data Set 23

Editing the Data Set 23
Setting the Dimensions of the Data Set 23
Entering and Viewing Data 24
Saving and Loading Data 25
Text Format for Data Sets 26
Customizing the Text Format 27
Loading the Data Set From NOL Studio 28
Clearing the Data Set 29
Making Values Permanent 29

Data Path Value 30
Vector Path Value 31
Data Pair 32

Data Controls 33
Data Set Rescaler 34

Making Values Permanent 35
Configuring 35

Vector Rescaler 37
Making Values Permanent 37
Configuring 37

Novelty Filter 39
Choosing Which Points to Keep 39
Deciding Whether a Data Pair is Novel 40
Making Values Permanent 40
Configuring 41

Data Pair Outlier Filter 42
Configuring 42
Making Values Permanent 43

Neural Networks 44
Saving and Loading Network Weights 44

Loading Model Parameters from a Text File 45
Import Model Parameters from NOL Studio 46
Backpropagation and Autoassociative Network File Format 46
Radial Basis Function and Rho Network File Format 47
Ensemble Network File Format 50
Predictive Model File Format 50
Backpropagation and Autoassociative Networks 50
Radial Basis Function and Rho Networks 51
Ensemble Networks 51
iv

Predictive Model 51
Backpropagation Net (BPN) 52

Configuring 52
Adjusting Weights 53
Saving and Loading Weights 53
Making Values Permanent 53

Autoassociative Net 54
Configuring 55
Choosing the Run Mode 55
Adjusting Weights 56
Saving and Loading Weights 56
Making Values Permanent 56

Radial Basis Function Net (RBFN) 57
Configuring 57
Saving and Loading Weights 58
Making Values Permanent 58

Rho Net 59
Configuring 59
Saving and Loading Weights 60
Making Values Permanent 60

Ensemble Net (ENN) 61
Adjusting Weights 61
Saving and Loading Weights 61
Making Values Permanent 61

GNNE Predictive Model 63
Adjusting Weights 63
Saving and Loading Weights 63
Making Values Permanent 63

NOL Studio Objects 64
Module Setting 65
Predictive Model 66
Optimization Mode 67
Partial Least Square Model 68

Saving and Loading Parameters 68
Methods for PLS Model 68

Principal Component Analysis Model 70
Saving and Loading Parameters 70
Loading PCA Data 70
Importing Model Data from NOL Studio 71
Displaying Statistical PCA Charts in G2 72
Methods for PCA Model 75

Chapter 4 Application Programmer’s Interface 77

Introduction 77

GNNE Objects 78
v

Data Sets 78
Vectors and Matrices 83
Neural Networks 85
Network Training 91
Statistical Models 92

Interaction with NOL Studio 102
Remote Process Management 102
Data Management 104

gnne-data-set 104
NOL Studio Data Objects 105

Neural Networks 111
Predictive Model 111
Optimization 113
Backpropagation Net Model 114
Radial Basis Function Net Model 116
Autoassociative Net Model 119
Rho Net Model 121
Ensemble Network 122
Partial Least Square Model 123
Principal Component Analysis Model 125

GNNE Predictive Model 127
Model Import and Export 127
Model Properties 128
Model Execution 131
Model Retraining 135

Index 137
vi

Preface
Describes this guide and the conventions that it uses.

About this Guide vii

Audience viii

Conventions viii

Related Documentation x

Customer Support Services xii

About this Guide
G2 Neural Network Engine (GNNE) is a set of plugin modules for developing
and running intelligent neural network applications. It provides the functionality
to manage the data flow of neural network applications and the interaction with
other applications. Its principal component is a set of neural network models and
data storage objects that lets you build your data flow procedures through a set of
API calls.

This guide describes general information about how to use GNNE objects. It
provides a reference for each object and its API. It assumes you are familiar with
G2. In addition, the Educational Services Department at Gensym holds classes
that are excellent ways to become familiar with these products.

This guide consists of these chapters:
vii

Audience
This guide is for application developers and system integrators to develop end-
user applications. Users should be familiar with the NeurOn-Line Studio
environment. Users should also be familiar with G2.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

This chapter... Describes...

Introduction to GNNE The features and benefits of the GNNE
module.

Integration of GNNE and NOL
Studio

How to integrate GNNE and NOL
Studio.

Object Reference The GNNE objects.

Application Programmer’s Interface GNNE’s application programmer’s
interface (API).

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs
viii

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
ix

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

NeurOn-Line

NeurOn-Line Release Notes

NeurOn-Line User’s Guide

NeurOn-Line Reference Manual

NeurOn-Line Studio User’s Guide

Gensym Neural Network Engine

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide
x

Related Documentation
G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes
xi

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.
xii

Customer Support Services
To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xiii

xiv

1

Introduction to GNNE
Provides an overview of the features and benefits of the GNNE module.

Introduction 1

GNNE Features 2

Module Integration 6

GNNE Objects 7

Accessing the GNNE API 11

Introduction
G2 Neural Network Engine (GNNE) is an API-based plugin module, which
works in conjunction with other Gensym products for developing applications
that monitor and control real-time processes. It is the preferred deployment
option for G2 Neural Network products. It is composed of a set of core objects
that you can clone from GNNE palettes, and a set of API procedures to express a
flow of data and perform neural network calculations.

An application that uses GNNE generally performs these steps:

• Acquires data from real-time processes.

• Makes inferences based on the data.

• Takes actions based on the inference values, such as raising alarms, sending
messages to operators, or concluding new setpoints.
1

The GNNE palettes are divided into these categories:

• Data Objects, which store numeric data.

• Data Controls, which include data filters.

• Neural Network Objects, which store network parameters.

• Statistical Model Objects, which store statistical model parameters.

You typically clone model objects and data set objects from GNNE palettes and
place them on your working folder. You can then configure the attributes of the
objects through API calls to control their behavior.

A typical GNNE workspace consists of GNNE objects and user-defined
procedures, which process data, analyze the results, and pass the results to other
parts of your application for monitoring and analysis. This set of objects and
procedures does the following:

• Acquires data, filters the data, and performs operations on the data, such as
arithmetic or SPC operations. This part of the application uses data items and
associated APIs.

• Makes inferences about the data and performs logic operations on the
inference values. This part of the application uses neural network items and
their APIs.

• Performs actions based on the inference values. This part of the application
uses user-defined procedures.

To facilitate the development of neural network applications, the
G2 NeurOn-Line bundle integrates the GNNE deployment environment with the
offline development tool, NOL Studio. When NOL Studio and G2 are connected,
model weights or parameters of any model developed in NOL Studio can be
passed to model objects in the online GNNE environment through a procedure
call. The data collected in the G2 application can be passed to NOL Studio for
visualization and preprocessing, and for building and validating models.

GNNE Features
GNNE provides these basic categories of functions:

• Data processing

• Model execution

• Neural network model retraining

• Neural network model validation

• File operation
2

GNNE Features
• Remote process management

• Online interaction with NOL Studio

Data Processing

The GNNE data processing functionality provides:

• Data storage in the forms of scaler, vector data, and data pair.

• Data filtering such as scaling, novelty filter, maximum age filter, and limit-size
filter.

Model Execution

The GNNE APIs for neural network model execution provide ways to calculate
output based on new input data for these types of models:

• Backpropagation network model

• Radial basis function network model

• Autoassociative network model

• Rho net model

• Ensemble model

• Predictive Mode

• Optimization Model

• Partial Least Square Model

• Principal Component Analysis Model

Neural Network Model Retraining

Normally, neural network models are trained in NOL Studio environment and
deployed in GNNE. However, GNNE provides the ability to retrain the model
based on new data gathered in G2. The GNNE APIs for neural network model
training provide training for these types of models:

• Backpropagation network model on a particular data set, using a training
method that you specify

• Radial basis function network model

• Autoassociative network model

• Rho net model
3

• Ensemble model

• Predictive model

Neural Network Model Validation

The GNNE APIs for neural network validation provide:

• Fit test that applies a neural network to see how well it fits a data set, using a
fitting criteria you specify. It also fills the prediction matrix of the data set
with predicted values corresponding to each validation case.

• Sensitivity tests to find the best input-output structure of the model.

• Validation tests of neural network models in NOL Studio with data passed
from GNNE.

File Operations

GNNE normally manages large data sets through text files. You can load training
and validation data from data files with predefined format. For neural networks,
GNNE lets you save and load what they have learned so far. GNNE saves the
information to text files, which you can examine yourself.

The GNNE APIs for file operations provide:

• Loading and saving data in different formats, such as array, matrix, or a
complete data set.

• Loading and saving neural network parameters.

• Loading and saving statistical model parameters.

Remote Process Management

GNNE uses remote procedure calls (RPCs) for numerically intensive tasks and
data exchange. GNNE uses three types of remote processes:

• A GNNE remote process performs neural network training, fit testing,
sensitivity testing, and running autoassociative networks.

• A JavaLink process performs predictive and optimization model calculation.

• A nols-gateway bridge communicates with NOL Studio.

The type of RPCs is based on the type of models it handles. The RPCs used to
handle backpropagation network models, radial basis function network models,
autoassociative network models, rho net models, and ensemble models are
defined as classic RPCs. The RPCs used to handle predictive and optimization
models are defined as NeurOn-Line JavaLink RPCs. The RPCs used to interact
with NOL Studio for data exchange and parameter passing are defined as NOL
Studio RPCs. The remote processes can coexist in G2.
4

GNNE Features
The remote procedures run as a concurrent process separate from G2. G2
communicates with the remote process by using a bridge, based on TCP/IP. It
also uses text files for data exchange.

For GNNE to perform these tasks correctly, you must:

• Launch the remote process.

• Establish the communication connection, using the proper protocol.

• Supply valid file names for data passing.

GNNE usually handles the RPC operation transparently. You can also handle the
startup of the remote process manually, either through an API call in G2 or
externally. The classic RPC is described in “Starting the Remote Process in an
External Window” in Chapter 6 “Managing NOL’s Remote Process” in the
NeurOn-Line User’s Guide. The NOL JavaLink RPC is described in “Launching a
Remote Process Using Procedure” in Chapter 13 “Model deployment” in the
NeurOn-Line Studio User’s Guide. The NOL Studio RPC is described in next
chapter.

Online Interaction with NOL Studio

NOL Studio is recommended as the modeling tool for developing neural network
and statistical models. An instance of NOL Studio can be launched from a G2
server and individual Telewindows session. Each Telewindows session owns its
own NOL Studio instance. The NOL Studio console closes when its owner
Telewindows session is closed. If an independent NOL Studio already exists and
is connected to G2 from its console, the owner will be the G2 server. Once a NOL
Studio console is connected to G2, all functionality provided by the NOL JavaLink
exists; it is not necessary to launch a new NOL JavaLink remote process for neural
network calculation. Before a NOL Studio interface is launched, if a remote
process is already established, the internal process decides which process to use
for the remote procedure calls.
5

Module Integration
GNNE is a plugin module that can be integrated with other G2 applications,
especially these Optegrity bundle modules:

GNNE integrates with these modules, as follows:

• Optegrity intelligent objects:

– Listen for property value changes from intelligent objects and set property
values of those objects.

– Listen for any type of event that occurs on an intelligent object, including
raw events, operator messages, and SymCure events.

– Associate generic GEDP diagrams with intelligent object classes. Specific
GEDP diagrams generate events for specific instances of those intelligent
object classes.

• SymCure

– Generates specific SymCure events for intelligent object instances or any
object instance.

– Detects SymCure events for intelligent domain objects or any
object instance.

This module... Performs these tasks...

Optegrity Provides intelligent object classes for building process
maps that integrate with GEDP, SymCure, and GEVM.

SymCure

Also known as CDG
(Causal Directed
Graphs)

Defines generic diagnostic models for intelligent object
classes, which reason about events to determine root
causes and to take corrective actions.

G2 Neural Network
Engine (GNNE)

Provides intelligent prediction for reasoning and basis
for future actions. Provides integration functions for
integrating NOL Studio with GNNE.

NOL Studio Provides deployment functions of NOL Studio models
and basic functions for integrating NOL Studio with
GNNE.
6

GNNE Objects
GNNE Objects
GNNE provides these categories of objects:

• Data objects, which store numeric data.

• Data controls, which include data filters.

• Neural network objects, which store network parameters.

• NOL Studio objects, which store predictive model, optimization and
statistical model parameters.

You typically place neural network, data control objects and data set objects on a
working folder that is not visible, such as the subworkspace of an intelligent
object, to represent the data flow of the object. It is also possible to build a class-
level data flow scheme, using GNNE objects and to associate those objects with an
intelligent object class.

GNNE provides objects on palettes. To create a data flow scheme, you choose
appropriate objects from the palettes, place them on a workspace, and create
procedure to manage the data flow and handle abnormal situations.

Data Objects

GNNE data objects are used for storing and manipulating static or dynamic data
for your application:

• Data Pair is a data class by combining two vectors: one vector becomes the
data pair’s input vector, the other becomes the data pair’s output vector.

• Data Set stores data pairs for training and testing neural networks.

• Data Path Value stores a scaler value with given timestamp.

• Vector Path Value stores a vector.

Here are the Data Sets palettes in the G2 server and Telewindows:
7

Data Controls

GNNE data controls are used to manipulate data for your application:

• Data Set Rescaler scales the input and target data in a Data Set. You can
specify your own scaling factors or let the Data Set Rescaler create them using
one of two standard scaling methods: Min-Max scaling or Mean-Standard
Deviation scaling. It can also create two Vector Scaling blocks that scale
vectors in the same way that the Data Set Rescaler scales a Data Set’s input
and target data. If your data has wide variations, you may need to rescale it to
train the network best. However, after you train the network with scaled data,
you will get invalid results if you apply that network to raw data. Also the
network’s output data is scaled and is different from the raw target data. To
solve these problems, the Data Set Rescaler not only scales the training data, it
also creates two Vector Rescalers that undo the scaling so you can apply the
network to raw input data and interpret the network’s output.

• Vector Rescaler rescales the elements of the input vector by applying additive
and multiplicative factors to each element. The block has different factors for
each element. Each element Inputi is rescaled according to this formula, where
Ai is the additive factor for that element and Mi is the multiplicative factor for
that element:

• Novelty Filter is a filter that prevents a Data Set from being filled with
redundant data. Whenever you add a data pair to the attached Data Set, the
Novelty Filter checks whether there are more than a specified number of data
pairs within a specified distance of the new data pair. If there are, the Novelty
Filter removes the older data pair.

• Data Pair Outlier Filter separates any data pairs whose elements do not fall
within specified bounds. The data pairs whose elements fall within the
bounds are passed as the filter output.

Outputi Mi Inputi Ai+ =
8

GNNE Objects
Here are the Data Controls palettes in the G2 server and Telewindows:

Neural Network Objects

The neural network objects are the key part of GNNE:

• Back Propagation Net is a feed-forward network with multiple layers.

• Autoassociative Net is a feed-forward network with multiple layers, with a
specific architecture that is especially good for handling certain types of
problems, including sensor validation.

• Radial Basis Function Net is a 3- layer, feed-forward networks, whose middle
layers use a multivariate Gaussian function.

• Rho Net is a type of Radial Basis Function Net. The difference is the network
output, which is a number between 0.0 and 1.0 that represents the probability
that the input value is in a particular class of feed-forward network with
multiple layers.

• Ensemble Network is a set of Backpropagation Nets, which have been trained
in NOL Studio. It has a specific architecture, which gives it accuracy and
robustness.

• Predictive Model is a model that is based on the Ensemble Network. In
addition to the neural network, the Predictive Model manages variable
information, such as name and delays. The Predictive Model is trained in
NOL Studio and can be retrained within GNNE.
9

Here are the Neural Networks palettes in the G2 server and Telewindows:

NOL Studio Objects

NOL Studio objects include NOL Studio models running through NOL JavaLink
RPCs and statistical models:

• Predictive Model is a NOL Studio object for ensemble networks. This object
contains the preprocessor defined in NOL Studio. The preprocessor can use
formulas to treat the input data before feeding them into neural network
models.

• Optimization contains the specification of an optimization problem.

• Partial Least Square (PLS) is a multivariate linear regression model.

• Principal Component Analysis (PCA) is a statistical model used to reduce the
dimensionality of a data set while retaining as much information as is
possible.
10

Accessing the GNNE API
Here are the Neural Networks palettes in the G2 server and Telewindows:

Accessing the GNNE API
You normally control GNNE objects from within a G2 procedure or function with
GNNE’s application programmer’s interface (API). The API includes procedures
that perform all available actions for every GNNE object.

Many of the API procedures require the following arguments:

• The object to execute.

• The input value or values required by the object.

• The output value or values produced by the object.

For more information about GNNE API, see Application Programmer’s Interface
11

12

2

Integration of GNNE
and NOL Studio
Describes how to integrate GNNE and NOL Studio.

Introduction 13

Integrated Module Hierarchy 14

Connecting NOL Studio and GNNE 14

Accessing the Integration API 17

Actions for Data Exchange and Parameter Passing 17

Introduction
G2 Neural Network Engine (GNNE) and G2 NeurOn-Line (NOL) Studio are
closely integrated to form an online development and deployment environment
for neural network applications. NOL Studio is the preferred tool for data
treatment, model building, and model validation. GNNE is the preferred
deployment option for G2 Neural Network products. An integrated environment
facilitates neural network application development. Once NOL Studio and GNNE
are connected online, model weights or parameters of any model developed in
NOL Studio can be passed on to the model object in GNNE environment through
procedure calls. The data collected in the G2 application can be passed into NOL
Studio to be visualized and preprocessed and used to build and validate models.

With the online integration of GNNE and NOL Studio, users can perform
following interactions from the GNNE side or the NOL Studio side:

• Launch NOL Studio from G2.

• Connect GNNE from NOL Studio.
13

• Acquire data from real-time processes. G2 provides the capability of reading
data from virtually any source through its family of bridge products. You can
send a data set collected in GNNE into a connected NOL Studio console as
training or validation data.

• Export model parameters into the model object in GNNE.

• Validate model with new data collected in G2.

Integrated Module Hierarchy
The G2 side of GNNE consists of several G2 modules. The top-level module is
gnne, which stands for G2 Neural Network Engine. It requires the nolstudio
deployment module. To use the integrated environment for neural network
development, your application must require the gnne top-level module.

For more information about creating, populating, and saving a module, see the
chapter on “Modules and Modularized KBs” in the G2 Reference Manual.

In addition to the core functionality of data processing and neural network
calculation, the gnne module provides:

• Standard palette behavior for GNNE and NOL Studio objects.

• Procedures for exchanging data between GNNE and NOL Studio.

• Management of the remote processes.

Connecting NOL Studio and GNNE
To provide an integrated environment for neural network development, you
must connect GNNE with NOL Studio. There are two ways to connect NOL
Studio and GNNE:

• Launch a NOL Studio console from G2. If a NOL Studio console is launched
from G2, it is automatically connected to this G2 process. An individual G2
window, which includes G2 server and Telewindows, can own its own NOL
Studio instance. Each window can only own one NOL Studio instance. The
NOL Studio console is closed if its owner Telewindows is closed.

• Connect G2 from an independent existing NOL Studio console. If you connect
G2 from the NOL Studio, this NOL Studio instance is owned by the G2 server.
This means that only one independent existing NOL Studio can connect to a
G2 process.
14

Connecting NOL Studio and GNNE
Launching NOL Studio from G2

You can launch a NOL Studio console using a procedure. You provide the home
directory, the listener port, and the name of the interface in a module setting
object called nols-setting. To facilitate this process, the NolG2Gateway class is
available in the nolstudio\com\gensym\nols\deploy directory.

To set up nols-settings object:

1 Start G2.

2 Clone a nols-settings object from the NOLStudio palette, and place it on a
workspace in your top-level module, not nolstudio.kb.

3 Edit the table attributes of the nols-settings object as follows:

4 Launch the NOL Studio using the nols-settings object.

Attribute Description

nols-studio-home-
directory

The directory in which NOL Studio is
installed, such as "C:\Program
Files\Gensym\g2-2015\nolstudio".

nols-remote-process-
listener-port

The port that the NolG2Gateway class uses,
which is 22044, by default.

nols-connection-timeout A connection timeout, which is 10 seconds,
by default.

nols-interface-object-
name

The name of the nols-studio-gateway object
that provides communication, which is a
subclass of gsi-interface. This object is
created transiently by the launch procedures
and referenced by the initialization
procedures.

nols-execution-
command

The name of execution file to launch the
interface.

nols-host The name of host machine.

nols-remote-process-id The ID return by the remote process.

others Not used in this version.
15

The procedure used to manage the NOL Studio console are:

nols-launch-nolstudio-by-setting
(settings: class nols-settings, client: class ui-client-item
-> id: float

nols-kill-remote-studio
(win: class g2-window)

The launching procedure uses the setting you create for your application. You can
create action buttons on a workspace in your module to start these procedures.
When the remote process is started successfully, you will see that the NOL Studio
console is launched and connected with the G2. If you terminate the remote
process successfully, the NOL Studio console will no longer exist.

Connecting G2 from NOL Studio

You can connect from NOL Studio to an existing G2 process by using nols-studio-
gateway bridge.

To connect to G2 from NOL Studio:

 Choose File > Connect G2:
16

Accessing the Integration API
The Connect G2 dialog appears, for example:

If the connection is successfully established, the connection information appears
in the toolbar, for example:

You can now exchange data and export model parameters between NOL Studio
and G2.

Note The NOL Studio to G2 gateway is associated with each G2 window. Each G2
window can only have one NOL Studio connection. If you connect G2 from the
NOL Studio side, the gateway is associated with the G2 server. To have a NOL
Studio for any particular Telewindows, launch the NOL Studio console from that
Telewindows.

Accessing the Integration API
The complete set of API for interactions between NOL Studio and G2 are listed in
Interaction with NOL Studio.

Actions for Data Exchange and Parameter
Passing

The description of actions to exchange data between NOL Studio and G2 are
given under each type of blocks in Object Reference.
17

18

3

Object Reference
Provides a reference for the GNNE objects.

Introduction 20

Data Objects 22
Data Set 23
Data Path Value 30
Vector Path Value 31
Data Pair 32

Data Controls 33
Data Set Rescaler 34
Vector Rescaler 37
Novelty Filter 39
Data Pair Outlier Filter 42

Neural Networks 44
Backpropagation Net (BPN) 52
Autoassociative Net 54
Radial Basis Function Net (RBFN) 57
Rho Net 59
Ensemble Net (ENN) 61
GNNE Predictive Model 63

NOL Studio Objects 64
Module Setting 65
Predictive Model 66
Optimization Mode 67
Partial Least Square Model 68
Principal Component Analysis Model 70
19

Introduction
This chapter describes the behavior and specific properties of each GNNE object.
The objects are organized by the palette on which they appear. The palettes for
GNNE objects in G2 server are:
20

Introduction
The corresponding palettes in Telewindows are:
21

Data Objects
The blocks in the Data Sets palette are:

• Data Set

• Data Path Value

• Vector Path Value

• Data Pair
22

Data Set
Data Set

A Data Set stores data pairs for training and testing neural networks.

A Data Set contains three matrices: input, target, and predictions. Whenever the
Data Set receives a data pair, it adds the data pair’s X vector to the end of the
input matrix and the data pair’s Y vector to the end of the target matrix. When a
Fit Tester tests a neural network with a Data Set, it fills the predictions matrix
with the values that the network predicts for each element of the input matrix.

The number of columns in the input matrix is the same as the dimension of the
largest X vector. The number of columns in the target and predictions matrices is
the same as the dimension of the largest Y vector. If the Data Set receives a data
pair with an X or Y vector that is smaller than the input or target matrix, the Data
Set pads that vector with zeros. If the Data Set receives a data pair with an X or Y
vector that is larger than the input or target matrix, the Data Set adds a column to
the appropriate matrix and pads the previous elements with zeros.

A Data Set has no configurable attributes.

Editing the Data Set

To edit a data set, you must:

• Set the dimensions of the data set.

• Edit the data set.

Setting the Dimensions of the Data Set

To set the dimensions of the data set, select the edit data set menu choice on the
Data Set object. When you first edit a Data Set that contains no data, GNNE
displays this dialog for entering the Number of Samples, the Number of Inputs,
and the Number of Targets:
23

Enter values for each of these attributes, and click the OK button to display the
spreadsheet for editing the data set.

If your data set already contains data and you select the edit data set menu choice,
GNNE does not display this dialog. Instead, GNNE displays the spreadsheet
directly.

Entering and Viewing Data

To edit the contents of a Data Set that is initially empty, click OK in the Enter Data
Set Dimensions dialog displayed above. GNNE displays a spreadsheet for editing
the inputs and targets of the data set, and for viewing the predictions,
timestamps, and quality.

To view or edit the contents of a Data Set that already contains data, simply select
the edit data set menu choice. GNNE displays the spreadsheet directly.

Here is a spreadsheet for a data set with four inputs and three targets:

The samples are numbered down the left side of the editor. The editor shows
samples 1. To see the other samples, use the vertical scroll bar. The data is split
into four sections labeled Timestamps, Quality, Inputs, and Outputs. If there is
more than one input or output in each sample, these sections can contain several
columns, numbered 0, 1, and so on. The editor shows samples 1 through 3. To see
the other samples, use the horizontal scroll bars.

You enter input and output data for the data set by either:

• Editing the spreadsheet cells directly.

• Reading the data from a file.

For more information on how to use the spreadsheet, see the G2 XL Spreadsheet
User’s Guide.
24

Data Set
Saving and Loading Data

You can save or load the complete data set to or from a file.

In the G2 server, to load a data set from a file, choose file operations on the Data
Set object to display this dialog:

Enter the name of the file from which to load the data and click the Load from File
button. To save a data set to a file, select the file operations menu choice, enter the
filename, and click the Save to File button.

In Telewindows, to load a data set from a file, choose load from file on the Data Set
object to display this file dialog:
25

To save a data set to a file, choose save into file on the Data Set object to display
this file dialog:

Text Format for Data Sets

The text format for saving and loading data sets from files consists of the
following lines:

• The version number. For this version of NeurOn-Line, it is 1.

• The number of data pairs in the Data Set.

• The number of elements in each input vector.

• The number of elements in each target vector.

• Several lines of data, one line for each data pair in the Data Set. Each line
contains the follow items, separated with commas:

– The number of the data pair, numbered consecutively starting with 0.

– The timestamp for the data pair. It can be either a float or an integer.

– The quality of the data pair. It can be OK, manual, or no-value.

– The input and target values of the data pair, starting with the input values.

Optionally, a line can contain a comment, which begins with a semicolon and
continues to the end of the line.
26

Data Set
Here is an example of a Data Set stored as text:

1; Version of this save/restore protocol for data sets
4 ; Number of samples in this data-set
2 ; Length of each input data vector
1 ; Length of each output data vector
0, 9516, OK, 0.000000000,0.000000000, 0.000000000
1, 9520, OK, 0.000000000,1.000000000, 1.000000000
2, 9524, OK, 1.000000000,0.000000000, 1.000000000
3, 9528, OK, 1.000000000,1.000000000, 0.000000000

Customizing the Text Format

By writing your own G2 procedures, you can customize the file format associated
with a data set.

For more information, see Application Programmer’s Interface.

In the data set object’s attribute table, set the attributes file-save-procedure and
file-load-procedure to the names of the procedures that read and write using your
format. Your file save and load procedures must save and load the following
attributes of a data set:

• input-data-set (class gnne-a-matrix)

• output-data-set (class gnne-a-matrix)

• time-stamps (class quantity-array)

• qualities (class symbol-array)

Note Two new procedures gnne-write-data-set-to-stream-with-predictions and gnne-
read-data-set-from-stream-with-or-without-predictions have been added into
GNNE, to make sure the predication arrays were also saved into data sets, when
they were set as the values of attributes file-save-procedure and file-load-
procedure.

Use the API procedure nol-configure-data-set to resize the elements of a data set.
The procedure g2-get-matrix-dimensions tells you the current dimensions of the
input Data Set and output Data Set matrices. These API procedures allow you to
save and load parts of data sets:

• nol-read-array

• nol-write-array

• nol-read-matrix

• nol-write-matrix
27

Loading the Data Set From NOL Studio

You can load the complete data set from a connected NOL Studio console. The
function is only available through Telewindows. You need to launch a NOL
Studio console from that Telewindows. To load a data set after the NOL Studio is
launched and connected, choose Import Data From NOL Studio on the Data Set
object to display this dialog:

If there is no data series in the NOL Studio, the following dialog appears:

After you select the data series in the data series selection dialog and click OK, the
classification dialog shows in the NOL Studio console for specifying the input and
output variables for this data set:
28

Data Set
Click OK to export this data series into the gnne-data-set object in G2.

Clearing the Data Set

You can call gnne-clear-data-set method to clear the data set.

Making Values Permanent

When you choose make permanent from the Data Set’s menu, it saves all the Data
Set’s current values.
29

Data Path Value

Data Path Value objects are for storing a scaler data value from neural network
training and testing method calls.

Property Description

Data Value The stored scaler value.

Quality Determines whether the data value is valid.

Collection Time A float number giving the G2 time when the
new data value is collected.

Expiration Time A float number giving the G2 time when the
new data value is no longer valid.
30

Vector Path Value
Vector Path Value

Vector Path Value objects are used for storing vector value from neural network
training and testing method calls.

Property Description

Array Length The length of stored vector.

Initial Values The initial values for all vector elements when
the vector is created.

Quality Whether the data value is valid.

Collection Time A float number giving the G2 time when the
new data value is collected.

Expiration Time A float number giving the G2 time when the
new data value is no longer valid.
31

Data Pair

The Data Pair stores a pair of vectors. The left input becomes the X vector and the
right input becomes the Y vector. Data Pair objects carry values as input
parameters or output parameters for variate neural network method calls.

Property Description

Input Data The left vector as input vector X.

Target Data The right vector as output vector X.

Quality Whether the data value is valid.

Collection Time A float number giving the G2 time when the
new data value is collected.

Expiration Time A float number giving the G2 time when the
new data value is no longer valid.
32

Data Controls
Data Controls
The blocks in the Data Controls palette are:

• Data Set Rescaler

• Vector Rescaler

• Novelty Filter

• Data Pair Outlier Filter
33

Data Set Rescaler

The Data Set Rescaler scales the input and target data in a Data Set. You can
specify your own scaling factors or let the Data Set Rescaler create them using one
of two standard scaling methods: Min-Max scaling or Mean-Standard Deviation
scaling. It can also create two Vector Scaling blocks that scale vectors in the same
way that the Data Set Rescaler scales a Data Set’s input and target data.

If your data has wide variations, you may need to rescale it to train the network
best. However, after you train the network with scaled data, you will get invalid
results if you apply that network to raw data. Also the network’s output data is
scaled and is different from the raw target data. To solve these problems, the Data
Set Rescaler not only scales the training data, it also creates two Vector Rescalers
that undo the scaling so you can apply the network to raw input data and
interpret the network's output.

To use the Data Set Rescaler:

1 Create a Data Set Rescaler for one Data Set by cloning it from the palette.

2 Choose configure on the Data Set Rescaler and choose one of the scaling
options.

3 Rescale the Data Set.

Calling the rescaling procedure gnne-rescale-data-sets with the original Data
Set and scaled Data Set as argument.

4 Create Vector Rescaler blocks.

Call the procedure gnne-rescale-data-sets to make vector rescalers. The
procedure returns two Vector Rescalers: the first one contains the scaling
factors that the Data Set Rescaler used for input data, and the second one
contains the scaling factors the Data Set Rescaler used for target data.

5 Train the neural network with the scaled Data Set.

To make the neural network more accurate and robust, call the training
procedure for the network with the scaled Data Set.

6 Use Vector Rescalers for network execution.

The Vector Rescalers undo the scaling that the Data Set Rescaler applied. You
can use raw input data and interpret the original units.
34

Data Set Rescaler
Making Values Permanent

Choose make permanent on the block to save the scale factors.

Configuring

To choose how the Data Set Rescaler performs its scaling, choose properties:

First, enter the number of inputs in the Number of Inputs attribute and the
number of targets in the Number of Targets attribute.

Next, choose the scaling options for the input and output data by selecting
options for Input Scaling and Target Scaling. The options are:

If you choose custom scaling, NeurOn-Line activates the Input Scale Factors
and/or Target Scale Factors buttons, depending on whether you chose custom
scaling for the input or target data. To enter your own scale factors, click the Input
Scale Factors button or the Target Scale Factors button, and enter the factors in the

Option Description

no scaling Do not scale the data. For each column, use 0 as the
additive scaling factor and 1 as the multiplicative scaling
factor.

0-1 min-max Scale each column so that the maximum value is 1 and the
minimum value is 0.

0-1 mean-stdev Scale each column so that the column's mean is 0 and its
standard deviation is 1.

custom scaling Scale each column using scaling factors that you specify.
35

spreadsheet that appears. Here is the dialog for entering custom scale factors for a
target vector of width 2:

Each element in a column Columni is rescaled according to the following formula,
where Ai is the additive factor for that column's elements and Mi is the
multiplicative factor for that column's elements:

For information on how to use this block through the API, see Application
Programmer’s Interface.

Columni Mi Columni Ai+ =
36

Vector Rescaler
Vector Rescaler

The Vector Rescaler block rescales the elements of the input vector by applying
additive and multiplicative factors to each element. The block has different factors
for each element.

Each element Inputi is rescaled according to this formula, where Ai is the additive
factor for that element and Mi is the multiplicative factor for that element:

Making Values Permanent

Choose make permanent on the block to save the current scaling factors.

Configuring

Choose properties to display the following dialog for entering the dimension of
the vector to rescale:

Outputi Mi Inputi Ai+ =
37

Enter a number for Vector Dimension and click the Edit Scale Factors button to
display the spreadsheet for rescaling the vector.

Here is the spreadsheet for rescaling a vector of length 4:

Enter values in the Additive and/or Multiplicative columns to add values to the
current index and/or multiply values by the current index and click OK.

For information on how to use this block through the API, see Application
Programmer’s Interface.
38

Novelty Filter
Novelty Filter

The Novelty Filter is a filter that prevents a Data Set from being filled with
redundant data. Whenever you add a data pair to the attached Data Set, the
Novelty Filter checks whether there are more than a specified number of data
pairs within a specified distance of the new data pair. If there are, the Novelty
Filter removes the older data pair.

To filter a Data Set, call the procedure gnne-execute-novelty-filter.

Choosing Which Points to Keep

Whenever the need-filtered Data Set receives a new data pair, the Novelty Filter
encloses the input value with a rectangular cell. If that cell contains more than the
maximum specified in the Points per Cell attribute, the Novelty Filter removes the
oldest data pair. You set the sizes of the cell in the properties dialog. Each input
has its own cell size, which is one-half the cell’s width.

In the example below, there are three newly added data pairs (the filled circles)
and a large number of existing data pairs (the empty circles). Each data pair has
two inputs (X1 and X2). In the Novelty Filter’s properties dialog, the size for X1 is
1 and the size for X2 is 2. This means that each new point is enclosed by a cell that
is 2 by 4 units large. The maximum points per cell is 3.
39

The Novelty Filter handles the three new points as follows:

• Since the cell contains fewer than the maximum Points per cell, nothing is
removed.

• Since the cell contains exactly the maximum Points per cell, nothing is
removed.

• Since the cell contains more than the maximum Points per cell, the oldest data
pair in the cell is removed. In the example, that data pair has an X through it.

Deciding Whether a Data Pair is Novel

The Novelty Filter passes a control signal when it receives a data pair that it
determines is novel. However, a data pair is not novel just because the filter keeps
it. An incoming data pair is judged to be novel if either of the following criteria is
satisfied:

1 If the input cell contains only the newly received data pair, the data pair is
novel.

2 If the input cell contains other data pairs, the Novelty Filter averages the
target values (or Y values) for those data pairs. Then, it computes the target
values for the received data pair and encloses it in a cell. You specify the
dimensions for the cell in the filter's configuration panel. These are different
dimensions from the ones for the input cell. If the average output values fall
outside the cell, the newly received data pair is novel.

Making Values Permanent

Choose make permanent on the block to save the sizes of all the input and
output values.
40

Novelty Filter
Configuring

Here is the properties dialog for the Novelty Filter:

Set Number of Inputs to the number of input values in each data pair, and set
Number of Targets to the number of output values in each data pair. Set Points
per Cell to the maximum number of data pairs you want inside each cell.

Once you have specified these attributes, click Edit Input Cell Sizes and Edit
Output Cell Sizes to edit the cell sizes. A dialog appears for entering the size of
each input and output value.

For information on how to use this block through the API, see Application
Programmer’s Interface.
41

Data Pair Outlier Filter

The Data Pair Outlier Filter separates any data pairs whose elements do not fall
within specified bounds. The data pairs whose elements fall within the bounds
are passed through the right output port. The other elements are passed through
the bottom output port.

Configuring

To set the upper and lower bounds for each element, choose properties on the
block to display this dialog:

To specify the number of elements of each vector, enter the dimensions for the
data pair's x and y vectors in the Number of Inputs and Number of Targets
attributes, respectively.

To edit the input vector’s bounds, click the Edit Input Bounds button. To edit the
target vector’s bounds, click the Edit Target Bounds button.
42

Data Pair Outlier Filter
Here are the dialogs for editing the x and y bounds of a data pair with two inputs
and 1 target:

The editor has two columns: Lower Bounds and Upper bounds. When you enter
the bounds, the Upper Bounds must always be greater than the Lower Bounds.
Therefore, you must enter the values in a specified order. Click OK when you are
finished.

Making Values Permanent

Choose make permanent on the block to save the filter’s upper and lower bounds.

For information on how to use this block through the API, see Application
Programmer’s Interface.
43

Neural Networks
The blocks in the Neural Networks palette are:

• Backpropagation Net (BPN)

• Autoassociative Net

• Radial Basis Function Net (RBFN)

• Rho Net

• Ensemble Net (ENN)

• GNNE Predictive Model

Saving and Loading Network Weights

All Neural Network objects let you save and load what they have learned so far.
All Neural Network objects also use text files to load parameters exported from
NOL Studio. NOL Studio and GNNE save the information to text files, which you
can examine. To load network parameters exported from NOL Studio, you can
call corresponding APIs for that particular network to read parameters from text
file, or you can choose Load from File to load the parameters interactively.
44

Neural Networks
Loading Model Parameters from a Text File

To load parameters of a neural network from a text file through Telewindows,
choose Load From File on the neural network object to display this dialog:

To save the parameters of a neural network to a file, choose Save Into File on the
neural network object to display this dialog:
45

Import Model Parameters from NOL Studio

If an existing NOL Studio console is connected to the G2 process, you can import
the model parameters directly from that NOL Studio. In Telewindows, to import
model parameters of a neural network from a connected NOL Studio owned by
that Telewindows, choose Import Parameters From NOL Studio on the neural
network object to display this dialog:

The available model names corresponding to the neural network type appear in
the selection list. Select the model name and click OK to import the parameters
into the neural network object in G2. If there is no available model object in NOL
Studio, the following dialog appears:

Backpropagation and Autoassociative Network File Format

The text format for saving and loading BPNs from files consists of the following
lines.

Note All lists are comma-separated and are in order beginning with the item for the
first layer. A comment begins with a semicolon and continues to the end of the
line.

1 The version number. For this version of NeurOn-Line, it is 1.

2 The number of layers in the network.

3 A list of the number of nodes in each layer.

4 A list of the transfer functions for each layer. The number 0 stands for linear,
and the number 1 stands for sigmoid.

5 The weight of each node in the network. Each weight is on a separate line and
is followed by a comment that identifies which nodes it is for. The convention
46

Neural Networks
used to identify the nodes is described below. Note that the bias node is
included as an extra node in each layer, except the output layer.

6 The weights are listed in order. The first is for the connection from the first
node in the first layer to the first node in the second layer. The last is for the
connection from the last node in the second-to-last layer to the last node in the
last layer.

Each weight is followed by a comment that identifies which nodes it is for. The
comment contains three numbers, as follows.

; i j k

This is the weight from node i in layer k to node j in layer k+1. For example, the
following weight is for the second node in the third layer to the first node in the
fourth layer.

0.7242780000 ; 2 3 1

Here is an example of a file for a BPN, with 3 layers, 2 input layer nodes, 3 hidden
layer nodes, and 1 output layer node:

; Version of this file save/restore protocol for BPNs
3 ; Number of layers
2, 3, 1 ; Layer sizes of BPN.
0, 1, 0 ; Transfer functions of BPN.
-0.32507146396688 ; 1 1 1
-0.82195669379450 ; 1 2 1
0.19680059179068 ; 1 3 1
-0.97116809332961 ; 2 1 1
0.61150472166297 ; 2 2 1
-0.12016215756566 ; 2 3 1
0.84987859399967 ; 3 1 1
-0.74007775586113 ; 3 2 1
-0.63971444152242 ; 3 3 1
0.84097431197944 ; 1 1 2
-0.79330091884975 ; 2 1 2
-0.01523408110297 ; 3 1 2
0.43417445464837 ; 4 1 2

Radial Basis Function and Rho Network File Format

The text format for saving and loading RBFNs from files consists of the following
lines.

Note All lists are comma-separated. A comment begins with a semicolon and continues
to the end of the line.
47

1 The version number. For this version of NeurOn-Line, it is 1.

2 A list of the number of nodes in each layer.

3 The unit overlap.

4 Whether the network uses spherical or elliptical units. The number 0 stands
for spherical units, and the number 1 stands for elliptical units.

5 The locations of the sphere or ellipse centers. The locations for each row are on
a separate line. Each line contains as many numbers as there are elements in
the input vector. The number of location lines is the same as the number of
hidden units.

6 The shapes of the units. If you are using spherical units, there is one line for
each hidden unit, and each line contains the width for the unit. If you are
using elliptical units, there are N*H lines, and each line contains N values,
where N is the number of input values and H is the number of hidden units.
The first N lines represent the inverse covariance matrix of radial unit 1, the
next N lines represent the inverse covariance of the second radial unit, etc.

7 The weights for the output layer. There is one line for each node in the hidden
layer, and each line contains the weights from the hidden node to the node in
the output layer. If this is a RBFN, the weights for the bias node are on an
extra line at the end.

Here is an example of a file for an RBFN with spherical units.

1; Version of this file save/restore protocol for RBFNs
3, 6, 1 ; Layer sizes of RBFN.
2 ; Unit overlap parameter
0 ; Spherical unit shape
1 ; Bias on
10.8896000000, 5.0603000000, 5.1376100000 ; Unit centers row 1
11.4327000000, 5.5737400000, 5.6030400000 ; Unit centers row 2
7.8846400000, 5.0246100000, 5.0246100000 ; Unit centers row 3
9.4227900000, 5.1608600000, 5.1608600000 ; Unit centers row 4
10.1503000000, 5.5839500000, 5.2830700000 ; Unit centers row 5
6.7058600000, 5.0688600000, 4.9504500000 ; Unit centers row 6
0.8992220000 ; Unit shapes row 1
1.1230300000 ; Unit shapes row 2
1.3784100000 ; Unit shapes row 3
1.2011400000 ; Unit shapes row 4
0.8846430000 ; Unit shapes row 5
2.1013600000 ; Unit shapes row 6
-2.3439900000 ; Second layer weights row 1
-0.3743570000 ; Second layer weights row 2
-0.3669410000 ; Second layer weights row 3
-3.9031200000 ; Second layer weights row 4
0.6760480000 ; Second layer weights row 5
48

Neural Networks
-0.9269620000 ; Second layer weights row 6
11.1002000000 ; Second layer weights row 7

Here is a file for an RBFN that has the same basic architecture as the one above,
but that uses elliptical units.

1; Version of this file save/restore protocol for RBFNs
3, 6, 1 ; Layer sizes of RBFN.
2 ; Unit overlap parameter
1 ; Elliptical unit shape
1 ; Bias on
6.6357800000, 5.2808800000, 4.9493200000 ; Unit centers row 1
7.2610900000, 5.1641900000, 5.1641900000 ; Unit centers row 2
10.3036000000, 5.3620800000, 5.1868500000 ; Unit centers row 3
8.2783000000, 5.0083000000, 5.0083000000 ; Unit centers row 4
6.6201000000, 4.8137500000, 4.8137500000 ; Unit centers row 5
11.2850000000, 5.3348900000, 5.4306300000 ; Unit centers row 6
5.3577500000, 0.1998100000, -4.0963000000 ; Unit shapes row 1
0.1998100000, 2.8251900000, -1.3811100000 ; Unit shapes row 2
-4.0963000000, -1.3811100000, 7.7281600000 ; Unit shapes row 3
1.0171300000, 0., -1.2055800000 ; Unit shapes row 4
0.7242780000, 9.4219700000, -7.0106700000 ; Unit shapes row 5
-1.2055800000, -7.0106700000, 11.3346000000 ; Unit shapes row 6
0.3653470000, 0.2290360000, -0.7771570000 ; Unit shapes row 7
0.2290360000, 4.0050800000, -3.5144000000 ; Unit shapes row 8
-0.7771570000, -3.5144000000, 7.2356000000 ; Unit shapes row 9
0.3881750000, -0.1173250000, -0.4112650000 ; Unit shapes row 10
-0.1173250000, 17.4052000000, -15.6234000000 ; Unit shapes row 11
-0.4112650000, -15.6234000000, 25.1755000000 ; Unit shapes row 12
4.1952000000, 0.2980240000, -3.6536000000 ; Unit shapes row 13
0.2980240000, 5.1403200000, -4.1436400000 ; Unit shapes row 14
-3.6536000000, -4.1436400000, 11.2164000000 ; Unit shapes row 15
0.2617710000, 0.1799830000, -0.6148770000 ; Unit shapes row 16
0.1799830000, 3.1725600000, -2.8314600000 ; Unit shapes row 17
-0.6148770000, -2.8314600000, 5.4504000000 ; Unit shapes row 18
3.7661200000 ; Second layer weights row 1
0.4220330000 ; Second layer weights row 2
-0.8155410000 ; Second layer weights row 3
0.9443360000 ; Second layer weights row 4
-0.5184290000 ; Second layer weights row 5
1.9278200000 ; Second layer weights row 6
7.8096200000 ; Second layer weights row 7
49

Ensemble Network File Format

The text format for saving and loading ensemble networks from files consists of
the following lines.

Note All lists are comma-separated. A comment begins with a semicolon and continues
to the end of the line.

1 The version number. For this version of NeurOn-Line, it is 1.

2 The number of submodels in the network.

3 The text for all submodels. The format for the submodel is the same as the
format for BPNs.

Predictive Model File Format

The Predictive Model in GNNE is called gnne-predictive-model. The Predictive
Model is saved into an XML format.

Here is an example of a XML file for a Predictive Model:

<?xml version="1.0" encoding="UTF-8"?>
<GNNEPredictiveModel xmlns:xsi="" >

<name>Model1</name>
<comment></comment>
<isTimeBased>true</isTimeBased>
<modelStatistics>

<modelRate>0.9643490282921242</modelRate>
<outputStatistics>

<variableStatistics>
<name>% C3 IN C2 COMP</name>

.....
<ensemble>

<numberOfSubnet>5</numberOfSubnet>
<bpn>

<numberOfLayers>4</numberOfLayers>
<layer>

<layerIndex>1</layerIndex>
<layerSize>20</layerSize>
<transferFunction>0</transferFunction>

</layer>
......

Backpropagation and Autoassociative Networks

Both the Backpropagation Net (BPN) object and the Autoassociative Net object
are feed-forward networks with multiple layers. The Autoassociative Network is
a type of Backpropagation Network with a specific architecture, which is
50

Neural Networks
especially good for handling certain types of problems, including sensor
validation.

Radial Basis Function and Rho Networks

Both the Radial Basis Function Net (RBFN) object and the Rho Net object are
3-layer, feed-forward networks, whose middle layers use a multivariate Gaussian
function. Both are especially good at handling classification problems. Their
biggest difference is what their output values are. The Radial Basis Function
Network can return any type of number. The Rho Network passes a number
between 0.0 and 1.0, which represents the probability that the input value is in a
particular class.

Ensemble Networks

The Ensemble Net object is an encapsulation object. The Ensemble Network is a
set of Backpropagation Net blocks, which have been trained in NOL Studio. It has
a specific architecture, which gives it accuracy and robustness.

Predictive Model

The GNNE Predictive Model object is an encapsulation object. The GNNE
Predictive Model is a wrapper around an Ensemble Network, which is a set of
Backpropagation Net blocks, and is trained in NOL Studio. The GNNE Predictive
Model contains the input and output variable information, along with variable
delays. The model manages the input and output data for online execution. The
model can be saved and transferred in XML format.
51

Backpropagation Net (BPN)

The Backpropagation Network, or BPN, is a feed-forward, layered network. Each
node in a layer is connected to all other nodes in the layer before it and the layer
after it. It is especially useful for modeling multivariate functions.

The first layer and the input vector must be the same size. The last layer and the
output vector must have the same size. The hidden or intermediate layers (layers
between the first and last layers) can be any size. You can have up to three hidden
layers, for a total of up to five layers. In general, a network has one hidden layer.
The number of nodes depends on the complexity of the function that the network
has to model. The more complex the function, the more nodes needed.

You can choose whether a layer uses the sigmoidal or linear function for its nodes.
In general, the input and output layers use the linear function, and at least one of
the hidden layers use a sigmoidal function.

Before you can pass data through a network, you must train the network. The
number of data pairs in the training data set should be greater than the number of
weights over the number of outputs. For example, if a network has 5 inputs, 10
hidden nodes and 3 outputs, its training data set should have at least this many
data pairs.

In practice, several times this number is recommended.

When you pass a vector to a network, it calculates the value for its output vector
by passing the input vector’s data through the layers of its network. Passing data
through a network does not change the values of its weights.

Configuring

To set the number of layers, number of nodes, and the transfer functions, you
configure the BPN object by calling gnne-configure-bpn.

You can specify the number of layers between 2 to 5 and set the number of nodes
and transfer function for each input layer. If the network contains fewer than five

10hidden 5inputs 1bias+  3outputs 10hidden 1bias+ +
3outputs

--- 31=
52

Backpropagation Net (BPN)
layers, some of the fields will be inactive. You specify the nodes and transfer
functions for the output layers. See the example for gnne-configure-bpn in Neural
Networks.

Caution If you change the architecture for a trained network by reducing the size of any
layer, you must retrain the network.

Adjusting Weights

When you first clone a BPN from the palette, all its weights are set to zero.
However, the network needs to contain small random weights to train properly.
To fill the network with weights appropriate for training, you can call the
gnne-randomize-bpn-weights method for BPN. GNNE overwrites the net’s
current weights with new random weights. You can specify an absolute amount
to randomize by, a percentage to randomize by, or both. This is the formula that
the object uses to jiggle the weights, where P is the percentage you entered, A is
the absolute amount you entered, and R1 and R2 are random numbers from -1.0
to 1.0.

When you are training a network and it seems to be stuck in a local minimum,
slightly changing the weights can help push the network back onto the right
track.

Saving and Loading Weights

You can save the network’s weights to a text file so you can load them later. The
file format for saved weights is described in Saving and Loading Network
Weights.

You use gnne-write-bpn-to-file and gnne-read-bpn-from-file to save or load
network data. To load weights, overwriting the weights that are currently in the
network.

Making Values Permanent

Choose make permanent on the neural network object to save the network’s
internal configuration and weight so that resetting G2 has no effect on their
values.

For the information about how to use this block through API, see Application
Programmer’s Interface.

NewWeight 1 R1 P 100+  OldWeight R2 A+=
53

Autoassociative Net

The Autoassociative Network is a type of Backpropagation network that uses
autoassociative mappings. It is a feed-forward, layered network. Each node in a
layer is connected to all other nodes in the layer before it and the layer after it. In
general, the input and output vectors are the same size and the network contains
three hidden layers. It is especially useful for sensor validation problems.

An Autoassociative Network contains 5 layers. The first and last layers must be
the same size as the input and output vectors. The hidden or intermediate layers
(layers between the first and last layers) can be any size. Usually, an
Autoassociative Network has 3 hidden layers. The middle layer, or bottleneck
layer, must have fewer nodes than any other.

You can choose whether a layer uses the sigmoidal or linear function for its nodes.
In general, the input, output, and bottleneck layers use the linear function, and
the rest use the sigmoid function.

Before you can pass data through a network, you must train the network. When
you pass a vector to a network, it calculates the value for its output vector by
passing the input vector’s data through the layers of its network. Passing data
through a network does not change the values of its weights.

If you run an Autoassociative network when it is configured to correct gross
errors, the Remote Process generates output like the following on the background
window:

For no fault, f = 45.1403
For sensor 1, f = 6.33029, estimated bias = -8.995572
For sensor 2, f = 45.1061, estimated bias = 0.410265
For sensor 3, f = 45.0235, estimated bias = 0.482471
For sensor 4, f = 44.8587, estimated bias = 0.760695
For sensor 5, f = 44.4518, estimated bias = -1.263943

The f value is the input/output residual. To correct gross errors from various
sensors, GNNE estimates the possible error or “estimated bias,” based on the
calculation of an expected value.

The higher the bias (a value away from 0), the more the Autoassociative network
is correcting the sensor value. The sensor with the least input/output residual,
like sensor 5 in the example output, is replaced by the Autoassociative network
with its corrected value.
54

Autoassociative Net
Configuring

To configure the Network Architecture, choose the number of layers, specify the
number of nodes, and specify the transfer functions for each layer. You configure
the Autoassociative Net object by calling gnne-configure-autoassociative-net
described in Neural Networks.

You can specify the number of layers between 2 to 5 and set the number of nodes
and transfer function for each layer. If the network contains fewer than five
layers, some of the fields will be inactive. You specify the nodes and transfer
functions for the output layers. See the example for gnne-configure-bpn in Neural
Networks.

Caution If you reduce the number of nodes in any layer or reduce the number of layers for
a trained network, the network’s current weights will be meaningless and you
will need to retrain the network.

We recommend that the first and last layer of an Autoassociative Network have
the same number of nodes. If the network contains fewer than five layers, some of
the fields will be inactive. You specify the number of nodes and transfer functions
for the output layers.

By default, the values for the transfer functions alternate in the manner that is
recommended for an Autoassociative Network: linear, sigmoid, linear, sigmoid,
linear, for the input, first hidden, bottleneck, second hidden, and output layers,
respectively.

Choosing the Run Mode

The configure method lets you choose whether the network replaces faulty input
values. If you choose run mode as filter noise only, the network does not perform
the replacement. When you run the network, it performs a single forward pass,
which filters random errors from the inputs but not systematic errors (or biases).

If you choose the correct gross errors option, the network does perform the
replacement. When you run the network, it performs N+1 passes, where N is the
number of elements in the input vector.

The first pass is the same as the pass used for the noise filter only option. In the
rest of the passes, one of the input values is ignored and the network computes
the best replacement value. Using the standard deviation for the input value, the
network computes how far off the input value is from its replacement value. The
network then replaces the input value that is furthest from its replacement value.

Caution Correct gross errors mode requires several times more computational work than
the filter noise only option.
55

When you choose the correct gross errors option, you need to provide an array of
Noise Standard Deviations the network uses.

Adjusting Weights

You can overwrite the current weights with random weights and adjust the
current weights by a random amount. For more information on adjusting
weights, see Adjusting Weights for the BPN object.

Saving and Loading Weights

You can save the network’s weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
object.

Making Values Permanent

Choose make permanent on the block to save the network’s internal configuration
and weights.

For information on how to use this block through the API, see Application
Programmer’s Interface
56

Radial Basis Function Net (RBFN)
Radial Basis Function Net (RBFN)

The Radial Basis Function Network (or RBFN) is a 3-layer, feed-forward network,
whose middle layer uses a multi-variate Gaussian function. It is especially useful
for classification problems. The RBFN is best for choosing which class out of
many classes an item belongs to. In general, RBFNs take less time to train but
more time to execute than BPNs and Autoassociative Networks.

An RBFN contains exactly 3 layers. The first layer and the input vector must be
the same size. The last layer and the output vector must be the same size. The
middle or hidden layer can be any size.

Each node in a layer is connected to all other nodes in the layers before it and after
it. The connections between the input and hidden layers are unweighted.
However, RBFNs weight the connections between the hidden layer and output
layer normally, like a BPN or an Autoassociative network.

The transfer function of the input and output layer is linear. You can choose
whether the transfer functions of the hidden layer are spherical or elliptical
Gaussians.

An RBFN can take a vector of any length as an input value, and it passes an
output vector and an output scalar. The vector is the same size as the last layer in
the network. The scalar is the maximum hidden node activation, which indicates
how well the hidden layer covers the input vector. This number is between 0.0
and 1.0. If it is close to zero, for example less than 0.2, the hidden layer does not
cover the input well, indicating that the network possibly predicted inaccurately
due to extrapolation.

Configuring

To configure the Network Architecture, specify the number of nodes in the input,
hidden, and output layers, the overlap between the nodes, and the shapes of the
hidden nodes. You configure the RBFN Net object by calling gnne-configure-rbfn
described in Neural Networks.

Caution If you change the architecture for a trained network by reducing the size of any
layer, you will need to retrain the network.

To set the unit overlap, choose whether the overlap is automatic or fixed. If the
overlap is automatic, the network chooses the best unit overlap for you
automatically. Generally, you will use an automatic overlap. If the overlap is
57

fixed, you need to provide a positive value for the unit overlap. The unit overlap
affects how smoothly the trainer fits the function to the data. A larger unit overlap
creates a smooth, slowly changing fit. A smaller unit overlap allows rapid
changes in the fit.

To choose the function shape for the hidden layer, select spherical or elliptical.
When data is sparse or the input values are not correlated to each other, spherical
units may perform better. When more data is available or the input values are
correlated to each other, elliptical units may perform better. If the input
dimension is 1, there is no difference between spherical and elliptical nodes, and
the network selects Spherical by default.

Saving and Loading Weights

You can save the network’s weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
object.

Making Values Permanent

Choose make permanent on the block to save the network’s internal configuration
and weights.

For information on how to use this block through the API, see Application
Programmer’s Interface
58

Rho Net
Rho Net

The Rho Network is a 3-layer, feed-forward network, whose middle layer uses a
multi-variate Guassian function. It is especially useful for classification problems.
The Rho Net is best for deciding whether an item belongs to one particular class
or not. In general, Rho Networks take less time to train but more time to execute
than BPNs and Autoassociative Networks.

A Rho Network contains exactly 3 layers. The first layer and the input vector must
be the same size. The last layer and the output vector must be the same size. The
middle or hidden layer can be any size.

Each node in a layer is connected to all other nodes in the layers before it and after
it. The connections between the input and hidden layers are unweighted.
However, a Rho Net weights the connections between the hidden layer and
output layer by using a probability function, which returns the likelihood that an
input belongs to a particular class.

The transfer functions of the input and output layers are linear. You can choose
whether the shape for the transfer functions of the hidden layer are spherical or
elliptical.

A Rho Net can take a vector of any length as an input value, and it passes a vector.
The contents of the vector depends on how you trained the network. When you
call gnne-train-rho-net to train a Rho Network, you choose whether the Rho
Network treats the training data as data from a single class or from multiple
classes. If you choose single class, the output vector contains one element, which
is the probability that the input element is in that class. If you choose multiple
classes, the output vector contains an element for each class, and the value of each
element is the probability that the output belongs to that element’s class.

Configuring

To configure the Network Architecture, specify the number of nodes in the input,
hidden, and output layers, the overlap between the nodes, and the shapes of the
hidden nodes. You configure the a Rho Net object by calling gnne-configure-rbfn
described in Neural Networks.

Caution If you change the architecture for a trained network by reducing the size of any
layer, you will need to retrain the network.
59

To set the unit overlap, choose whether the overlap is automatic or fixed. If the
overlap is automatic, the network chooses the best unit overlap for you
automatically in the course of training. Generally, you will use an automatic
overlap.

If the overlap is fixed, you need to provide a positive value in the configuration
method call. The overlap parameter is a multiplicative factor applied to a basic
hidden unit width, which is the nearest neighbor distance between the radial
units. If the Unit Overlap is 1.0, each hidden unit’s width is the distance to the
nearest hidden unit. If the overlap parameter is 2.0, for example, the unit’s width
is twice the nearest neighbor distance. The unit overlap affects how smoothly the
trainer fits the function to the data. A larger unit overlap creates a smooth, slowly
changing fit. A smaller unit overlap allows rapid changes in the fit. The Unit
Overlap should usually be between 0.5 and 5.0.

To choose the function shape for the hidden layer, you can select spherical or
elliptical. When data is sparse or the input values are not correlated to each other,
spherical units may perform better. When more data is available or the input
values are correlated to each other, elliptical units may perform better. If the input
dimension is 1, there is no difference between spherical and elliptical nodes, and
the network selects Spherical by default.

Saving and Loading Weights

You can save the network’s weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
object.

Making Values Permanent

Choose make permanent on the block to save the network’s internal configuration
and weights.

For information on how to use this block through the API, see Application
Programmer’s Interface
60

Ensemble Net (ENN)
Ensemble Net (ENN)

The Ensemble Network, or ENN, is a feed-forward network. It has a specific
architecture, which includes a set of submodels of Backpropagation Nets, or
BPNs, and an output median calculator. The ENN provides accuracy and
robustness, and especially useful for modeling multivariate functions.

The first layers of all BPNs and the input vector must be the same size. The last
layers of all BPNs and the output vector must also be the same size. Before you
can use the Ensemble Net object, you must train the network. The Ensemble Net
must be trained initially, using NOL Studio, which is an offline, neural network
modeling tool. For more information, see the NeurOn-Line Studio User’s Guide.

Before you can pass data through an Ensemble Net the first time, you must
initialize the ENN object by loading its settings and weights through file
operation. When you pass a vector to an Ensemble Net, it passes the vector
through all its submodels, and it uses the Median calculator to calculate the
median values of the output from all submodels. The output vector of the
Ensemble Net is composed of these median values.

Adjusting Weights

When you first create an ENN object, all its weights are set to zero, and its
architecture is set to a null initial state. You must load its architecture settings and
its weights from a text file exported from NOL Studio. You cannot change the
architecture of an Ensemble Net; however, if you detect the network has large
prediction errors, you can adjust the weights by retraining the network. You can
call gnne-train-ensemble method to retrain the network.

Saving and Loading Weights

You can save the network’s weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
object.

Making Values Permanent

Choose make permanent on the neural network object to save the network’s
internal configuration and weight so that resetting G2 has no effect on their
values.
61

For information on how to use this block through the API, see Application
Programmer’s Interface
62

GNNE Predictive Model
GNNE Predictive Model

The GNNE Predictive Model is a feed-forward network. It is a combination of an
Ensemble Network and an input-output manager. The GNNE Predictive Model
provides the easy management of the input and output data, and the Ensemble
Network’s accuracy and robustness.

The GNNE Predictive Model object cloned from the palette is an empty model
without variable information or model parameters. Before you can pass data
through the Predictive Model the first time, you must initialize the model object
by loading its variable information and model parameters through file operation.
You can also transfer that information through an online bridge when NOL
Studio is connected to G2.

Adjusting Weights

When you first create a GNNE Predictive Model object, all its weights are set to
zero, and its architecture is set to a null initial state. You must load its architecture
settings and its weights from an XML file exported from NOL Studio. You cannot
change the architecture of a GNNE Predictive Model; however, if you detect the
network has large prediction errors, you can adjust the weights by retraining the
network. See the NeurOn-Line Studio User’s Guide for information on how to
export predictive models in XML format.

Saving and Loading Weights

After you retrain the GNNE Predictive Model, you can save the model
information to an XML file so you can load it later. For information on how to do
this, see Saving and Loading Weights for the BPN object.

Making Values Permanent

Choose make permanent on the neural network object to save the network’s
internal configuration and weight so that resetting G2 has no effect on their
values.

For information on how to use this block through the API, see Application
Programmer’s Interface.
63

NOL Studio Objects
The blocks in the NOL Studio palette are:

• Module Setting

• Predictive Model

• Optimization Mode

• Partial Least Square Model

• Principal Component Analysis Model
64

Module Setting
Module Setting

The Module Settings for NOL Studio is an instance of nols-setting. The attributes
of the nols-settings object are:

Attribute Description

nols-studio-home-directory The directory in which NOL Studio is
installed, such as "C:\Program
Files\Gensym\G2-2015\nolstudio".

nols-remote-process-
listener-port

The port that the NolG2Gateway class uses,
which is 22044, by default.

nols-connection-timeout A connection timeout, which is 10 seconds,
by default.

nols-interface-object-name The name of the nols-studio-gateway object
that provides communication, which is a
subclass of gsi-interface. This object is
created transiently by the launch procedures
and referenced by the initialization
procedures.

nols-execution-command The name of execution file to launch the
interface.

nols-host The name of G2 host machine.

nols-remote-process-id The ID return by the remote process.

others Not used in this version.
65

Predictive Model

See “The Predictive Model and its API” in Chapter 13 Model Deployment of
NeurOn-Line Studio User’s Guide.
66

Optimization Mode
Optimization Mode

See “The Optimization Model and its API” in Chapter 14 Optimization
Deployment of NeurOn-Line Studio User’s Guide.
67

Partial Least Square Model

Partial Least Squares (PLS) is a statistical technique for building a linear
regression model. The linear PLS model is simple and robust for correlating
input variables.

To configure a PLS model:

1 Make sure G2 is running, then clone the PLS model onto a workspace in your
application.

Make sure the workspace does not belong to the nolstudio module.

2 Write procedures that use the PLS model API to make the model prediction.

Saving and Loading Parameters

You can load PLS parameters from a text file exported from NOL Studio, and you
can import the parameters directly from a connected NOL Studio console. The
steps for loading PLS model parameters are the same as for loading a neural
network model. For information on how to do this, see Saving and Loading
Weights for the neural network object.

Methods for PLS Model

Here are the methods you use for building a PLS model and running data
through the model to get model predictions.

nols-load
(model: class nols-pls-model, stream: class g2-stream)

Loads the PLS parameter exported from NolStudio predictive model, which is
trained as a linear model only.

nols-learn
(model: class nols-pls-model, x: class item-array, y: class item-array,
nfactor: integer)

Builds the PLS model from data matrix x and y with a specified number of
internal factors. The data matrix should be an item array of float arrays.
68

Partial Least Square Model
nols-rescaler-input-vector
(model: class nols-pls-model, input-vector: class float-array,
output-vector: class float-array)

Scales the input data before feeding it into the PLS model. The PLS model
stores the scale weights internally.

nols-rescaler-output-vector
(model: class nols-pls-model, input-vector: class float-array,
output-vector: class float-array)

Scales the output data back to their normal range after PLS model execution.
The PLS model stores the scale weights internally.

nols-execute
(model: class nols-pls-model, x: class float-array)
-> value: class float-array

Executes a PLS model with the given input data x and returns the output.

nols-execute
(model: class nols-pls-model, x: class item-array, y: class item-array)

Executes a PLS model with the given input data matrix x, where y provides
the resulting matrix. The data matrix should be an item array of float arrays.

For details about the API, see Application Programmer’s Interface
69

Principal Component Analysis Model

Principal components analysis (PCA) is a statistical technique applied to a set of
variables to discover which sets of variables form coherent subsets that are
relatively independent of one another. These subsets, principal components, are
thought to be representative of the underlying processes that have created the
correlations among variables. For this reason, PCA models are useful for
analyzing data offline, as well as for online process monitoring.

To configure a PCA model:

1 Make sure G2 is running, then clone the PCA model onto a workspace in your
application.

Make sure the workspace does not belong to the nolstudio module.

2 Write procedures that use the PCA model API to do the PCA calculation.

Saving and Loading Parameters

You can load PCA parameters from a text file exported from NOL Studio, and
you can also import the parameters directly from a connnected NOL Studio
console. The steps for loading PCA model parameters are the same as for loading
a neural network model. For information on how to do this, see Saving and
Loading Weights for the neural network object.

Loading PCA Data

Principal component analysis models are a representation of the statistical
characteristics of a data set. The principal components calculated from the model
are useful to show these statistical properties, which can be used to monitor the
process. Here the model data include the principal components and square
prediction errors. These data are calculated in NOL Studio and are available in G2
through text file exchange or directly online data passing.

The squared prediction errors are the sum of errors between the real values,
which are normally scaled, and the reconstructed values from PCA model.
Mathematically, the error can be quantified by a matrix E (n x m), calculated as
follows:

E = X - TPt = X(I - PPt)

For more information, see “What is PCA” in Chapter 3 “Visualizing Data” in the
NeurOn-Line Studio User’s Guide.
70

Principal Component Analysis Model
To load PCA data from a file, in Telewindows, choose Load Data From File on the
PCA object to display this dialog:

Select the exported score file from the file system, then click Select to load.

Importing Model Data from NOL Studio

In Telewindows, to import PCA data from a connected NOL Studio owned by
that Telewindows, choose Import Data From NOL Studio on the PCA object to
display this dialog:

The available model names corresponding to the PCA models in NOL Studio
appear in the selection list. Select the model name and click OK to import the data
71

into the PCA object in G2. If there is no available PCA model object in NOL
Studio, the following dialog appears:

Displaying Statistical PCA Charts in G2

Statistical PCA charts are useful multivariate statistical control tools for
monitoring the underling process. In Telewindows, you can create PCA
monitoring charts based on variant control limits for the PCA model data. If the
model data are imported into the PCA object in G2, you can view the behavior of
the training data in these control charts. Statistical PCA charts include principal
component (PC) charts and square prediction error (SPE) charts. The PC chart can
be shown in single line chart, 2D chart, and 3D chart formats. Some chart
examples are show below.

You can launch all types of charts through APIs for the PCA model. For details,
see Application Programmer’s Interface

Square Prediction Error Chart

The yellow represents the error calculated from the training data, and red line is
the 95% control limit, which is used to monitor the overall behavior of the process.
72

Principal Component Analysis Model
Single Principal Component Chart

The single PC chart shows a single principal component variable changes over the
sampling time defined in the training data. Because the input variables are all
scaled around their centers, the PC variable varies around it zero mean. The red
lines represent the 95% control limit for this PC and is useful for process
monitoring.
73

Two Dimensional Principal Component Chart

The 2D PC chart shows how two principal component variables from their
training data vary against each other. The red line represent the 95% control limit
for this surface. The 2D chart provides more information about the process.

Three Dimensional Principal Component Chart
74

Principal Component Analysis Model
The 3D PC chart shows how three principal component variables from their
training data vary against each other. The 3D chart provides more information
than the 2D chart.

PCA Loading Vector Chart

The loading vector chart shows the loading vector for a given principal
component. The value on each variable shows the contribution of that variable to
the given principal component.

Methods for PCA Model

These are the methods you use to build a PCA model and run data through
the model.

nols-load
(model: class nols-pca-model, stream:class g2-stream)

Loads the PCA parameter exported from the NOLStudio projection chart.

nols-learn
(model: class nols-pca-model, x: class item-array)

Builds the PCA model from data matrix x, which is an item array of float
arrays.

nols-rescaler-input-vector
(model: class nols-pca-model, input-vector: class float-array,
output-vector: class float-array)

Scales the input data before feeding it into the PCA model. The PCA model
stores the scale weights internally.
75

nols-execute
(model: class nols-pca-model, x: class float-array, pcs: class float-array)

Runs the scaled input data through the PCA model. Pcs provides the results
of the calculation.

nols-execute
(model: class nols-pca-model, x: class float-array, pcs: class float-array,
nfactor: integer)

Calculates first nfactor principal components for the scaled input. Pcs
provides the results of the calculation.

For details, see Application Programmer’s Interface
76

4

Application
Programmer’s Interface
Describes GNNE’s application programmer’s interface (API).

Introduction 77

GNNE Objects 78

Interaction with NOL Studio 102

GNNE Predictive Model 127

Introduction
This chapter describes how to use the G2 Neural Network Engine Application
Programmer’s Interface (API) and serves as a quick reference guide for
application developers.

You can normally control GNNE objects from within a G2 procedure or function
with GNNE’s application programmer’s interface (API). The API includes
methods and procedures that perform all available actions for every GNNE
object.
77

GNNE Objects
The APIs are organized by the target object.

Data Sets

gnne-append-data-set
(blk: class gnne-data-set , input-dp: class gnne-data-pair,
output-data: class gnne-data-path-value)

Inserts the data contained in the input data pair into a new row at the end of
the Data Set object. The input data pair is not added to the data structure of
the data set. The data is copied from the input-dp structure to the data set. The
calling procedure must manage the data structure by deleting the input data
pair after the call to the procedure has been made; otherwise, the procedure
can leak items.

gnne-make-data-set-permanent
(blk: class gnne-data-set)

Make the data set permanent.

gnne-remove-pair-from-data-set
(blk: class gnne-data-set, index: integer)

Removes a data pair from the data set, given the row index.

Parameter Description

blk The Data Set object to which data is to be added.

input-dp The input data pair that contains the row of data to add
to the data set.

output-data An object that contains the number of rows in the data
set.

Parameter Description

blk The Data Set object to make permanent.

Parameter Description

blk The Data Set object from which to remove a data
pair.

index The row number of the data pair to remove.
78

GNNE Objects
gnne-read-data-set-from-file
(blk: class gnne-data-set, file-name: text)

Populates the contents of a Data Set object with the contents of a file. If the
procedure named by the File Load Procedure attribute of the Data Set object
exists, then that procedure is used to load the file. Otherwise, the file must be
in the standard format created when the procedure saves a file.

gnne-write-data-set-to-file
(blk: class gnne-data-set, file-name: text)

Stores the contents of a Data Set object to a file. The format of the output file
can be customized by providing the name of a user-defined procedure in the
File Load Procedure of the Data Set object. Otherwise, the procedure uses the
standard file format.

gnne-configure-data-set
(blk: class gnne-data-set, number-of-samples: integer, width-of-input: integer,
width-of-output: integer)

Configures a Data Set object to a given specification.

Parameter Description

blk The Data Set object to populate.

file-name The name of the file containing the data values, including
a path appropriate for the file system type.

Parameter Description

blk The Data Set object that contains the data to write.

file-name The name of the file in which to save the data, including a
path appropriate for the file system type.

Parameter Description

blk The Data Set object to be configured.

number-of-
samples

The number of rows for the data set.

width-of-input The number of input variables for the data set.

width-of-output The number of output variables for the data set.
79

gnne-clear-data-set
(blk: class gnne-data-set)

Clears transient values of a data set without affecting the permanent values.

gnne-read-data-set
(input-ds: class gnne-data-set, line-pointer: integer,
output-dp: class gnne-data-pair, output-data: class gnne-data-path-value)

Reads the contents of a data set and places the contents into an output data
pair. The procedure maintains the line pointer during and after each
procedure call.

gnne-random-divide-data-set
(obj-list: class item-list, fract: float, clear-output: symbol,
ds1: class gnne-data-set, ds2: class gnne-data-set)

Randomly copies all the data pairs from one or more data sets to two output
data sets. This procedure is especially useful when you need to split data into
two sets: one for training a neural network and the other for testing a neural
network.

Parameter Description

blk The Data Set object to be cleared.

Parameter Description

input-ds The Data Set object to read.

line-pointer The index of the data set row for the procedure to read
from.

output-dp The output data pair into which the reader reads the
data.

output-data The line pointer after the procedure call.

Parameter Description

obj-list The list of Data Set objects to read.

fract The fract value for dividing the data sets, which is a float
from 0 to 1.

clear-output The flag for clearing the output at the end of the
procedure call, which is the symbol yes or no.
80

GNNE Objects
gnne-copy-data-sets
(obj-list1: class item-list , obj-list2: class item-list, clear-output: symbo)

Copies all of the data sets in the first object list to each of the data sets in the
second object list.

gnne-rescale-data-sets
(blk: class gnne-data-set-rescaler,
obj-list1: class item-list, obj-list2: class item-list)

Scales the data from all of the data sets in the first object list into each of the
data sets in the second object list, using a Data Set Rescaler object.

gnne-execute-maximum-age-filter
(max-age: quantity, ds: class gnne-data-set, obj-list: class item-list,
output-data: class gnne-data-path-value)

Removes any data pair whose age is greater than a specified limit, and
archives the removed data pairs to a list of data sets.

ds1 The first Data Set object into which the data is copied.

ds2 The second Data Set object into which the data is copied.

Parameter Description

Parameter Description

obj-list1 The list of Data Set objects to read.

obj-list2 The list of Data Set objects into which the data is copied.

clear-output Whether to clear the output at the end of the procedure
call, which is the symbol yes or no.

Parameter Description

blk The Data Set Rescaler object used to read data from the
data sets.

obj-list1 The list of Data Set objects containing the data to be
scaled.

obj-list2 The list of Data Set objects into which the scaled data is
copied.
81

gnne-execute-size-limitation-filter
(max-size: integer, ds: class gnne-data-set, obj-list: class item-list,
output-data: class gnne-data-path-value)

Limits the number of data pairs stored in the data set. If the data set contains
more data pairs than the maximum specified, the filter removes enough data
pairs from the top of the data set to keep the size at the maximum, and it
archives the removed data pairs to the data sets in the given list.

gnne-execute-novelty-filter
(filter: class gnne-novelty-filter, ds: class gnne-data-set, obj-list: class
item-list, output-data: class gnne-data-path-value)
-> truth-value

Filters the data set, using a Novelty Filter object. You configure the filtering
algorithm in the object. The calling procedure must manage the data
structures by deleting the object list and output data after the call to the
procedure has been made; otherwise, the procedure can leak items.

Parameter Description

max-age The maximum age limit for each sample to be filtered.

ds The Data Set object to be filtered.

obj-list The list of Data Set objects used to archive the filtered
data pairs.

output-data The data set size after the procedure call.

Parameter Description

max-size The maximum size limit for each sample to be filtered.

ds The Data Set object to be filtered.

obj-list The list of Data Set objects used to archive the filtered
data pairs.

output-data The data set size after the procedure call.

Parameter Description

filter The Novelty Filter object that filters the data.

ds The primary Data Set object to be filtered. In a diagram,
this would be the data set to which the capability link on
the Novelty Filter object would attach.
82

GNNE Objects
Vectors and Matrices

gnne-read-array
(stream: class g2-stream, number-of-values: integer,
destination-array: class g2-array, delimiter: text)

Reads a line of values, separated by delimiters. This procedure can read
integer, float, quantity, symbol, text, and truth-value arrays.

gnne-write-array
(stream: class g2-stream, array: class g2-array, delimiter: text, comment: text)

Writes a line of values, separated by delimiters. This procedure can write
integer, float, quantity, symbol, text, and truth-value arrays.

obj-list The list of Data Set objects in which the removed data
points are stored.

output-data The new number of rows in the data set.

Return Value Description

truth-value Returns true if the new data point is none.

Parameter Description

Parameter Description

stream The G2 file stream to read.

number-of-
values

The number of values to read.

destination-
array

The G2 array in which to store the values.

delimiter The delimiter string.

Parameter Description

stream The G2 file stream to write.

array The G2 array from which to write the values.

delimiter The delimiter string.

comment Comment text to write with the file stream.
83

gnne-read-matrix
(stream: class g2-stream, x: class gnne-a-matrix, rows: integer, cols: integer,
delimiter: text)

Reads two-dimensional arrays of values, separated by delimiters, into a
matrix. The matrix is redimensioned, if necessary.

gnne-write-matrix
(stream: class g2-stream, x: class gnne-a-matrix, delimiter: text,
comment: text)

Writes a matrix into a G2 file stream, separated by delimiters.

gnne-execute-vector-rescaler
(blk: class gnne-vector-rescaler, input-vector: class gnne-vector-path-value,
output-vector: class gnne-vector-path-value)

Rescales the elements of the input vector by applying additive and
multiplicative factors to each element, using a Vector Rescaler object.

Parameter Description

stream The G2 file stream to read.

x The matrix in which to store the values.

rows The number of rows for the two-dimensional array.

cols The number of columns for the two-dimensional array.

delimiter The delimiter string.

Parameter Description

stream The G2 file stream to write.

x The matrix from which to write the values.

delimiter The delimiter string.

comment Comment text to write with the matrix.

Parameter Description

blk The Vector Rescaler object used to process the vectors.
The object contains scale factors for each element.

input-vector The input vector path value passed into the object.

output-vector The output vector path value produced by the object.
84

GNNE Objects
gnne-convert-vector-to-data-pair
(input-vector1: class gnne-vector-path-value,
input-vector2: class gnne-vector-path-value,
output-dp: class gnne-data-pair, check-concurrency: truth-value)

Converts two vectors into a data pair. The first vector is the X in the data pair,
and the second vector is the Y. The check-concurrency flag indicates whether
the input vectors have a later timestamp than the data pair. If this flag is true,
the data pair is only valid when both vectors have later timestamps.

Neural Networks

gnne-execute-bpn
(net: class bpn, x: class gnne-vector-path-value,
y: class gnne-vector-path-value)

Executes a Backpropagation Network object with an input X vector, and
pushes the output values into an output Y vector.

.

Parameter Description

input-vector1 The input vector path value passed into the data pair
as X.

input-vector2 The input vector path value passed into the data pair
as Y.

output-dp The output data pair.

check-
concurrency

Whether to check the timestamps of both vectors and the
data pair.

Parameter Description

net The Backpropagation Network object to be executed.

x The input vector X for the network.

y The output vector Y from the network.
85

gnne-configure-bpn
(net: class bpn, layer-sizes: class integer-array,
transfer-functions: class integer-array)

Configures a Backpropagation Network object with a given specification.

gnne-clear-bpn
(net: class bpn)

Clears a Backpropagation Network object of its weights.

gnne-write-bpn-to-file
(net: class bpn, stream: class g2-stream)

Saves parameters of a Backpropagation Network object to a file stream.
.

gnne-read-bpn-from-file
(net: class bpn, stream: class g2-stream)

Reads parameters of a Backpropagation Network object from a file stream.

Parameter Description

net The Backpropagation Network object to be configured.

layer-sizes The integer array that contains the size parameter of each
layer.

transfer-
functions

The integer array that contains the flag of transfer
functions for each layer.

Parameter Description

net The Backpropagation Network object to be cleared.

Parameter Description

net The Backpropagation Network object whose parameters
are to be saved.

stream The G2 file stream into which the parameters are saved.

Parameter Description

net The Backpropagation Network object whose parameters
are to be read.

stream The G2 file stream from which the parameters are read.
86

GNNE Objects
gnne-execute-rbfn
(net: class rbfn, x: class gnne-vector-path-value,
y: class gnne-vector-path-value, maximum-activation-path: class
gnne-data-path-value)

Executes a Radial Basis Function Network object with an input X vector, and
pushes the output values into an output Y vector. The Maximum Activation
attribute of the object indicates the performance of the inner layer.

gnne-configure-rbfn
(net: class rbfn, inputs: integer, hidden: integer, outputs: integer,
overlap: float, unit-type: symbol)

Configures a Radial Basis Function Network object with a given specification.

Parameter Description

net The Radial Basis Function Network object to be executed.

x The input vector X for the network.

y The output vector Y from the network.

maximum-
activation-path

The maximum hidden node activation value.

Parameter Description

net The Radial Basis Function Network object to be
configured.

inputs The number of inputs.

hidden The size of the hidden layer.

outputs The number of outputs.

overlap The type of overlap.

unit-type The unit type.
87

gnne-write-rbfn-to-file
(net: class rbfn, stream: class g2-stream)

Saves the specification and weights of a Radial Basis Function Network object
into a file stream.

gnne-read-rbfn-from-file
(net: class rbfn, stream: class g2-stream)

Reads the specification and weights of a Radial Basis Function Network object
from a file stream.

gnne-execute-rho-net
(net: class rho-net, x: class gnne-vector-path-value,
y: class gnne-vector-path-value)

Executes a Rho Network object with an input X vector, and pushes the output
values into an output vector Y.

Parameter Description

net The Radial Basis Function Network object to be saved.

stream The G2 file stream into which the data is saved.

Parameter Description

net The Radial Basis Function Network object whose data is
to be read.

stream The G2 file stream to read.

Parameter Description

net The Rho Network object to be executed.

x The input vector X for the network.

y The output vector Y from the network.
88

GNNE Objects
gnne-execute-ensemble-model
(net: class ensemble-network , x: class gnne-vector-path-value,
y: class gnne-vector-path-value)

Executes an Ensemble Network object with an input X vector, and pushes the
output values into an output vector Y.

gnne-read-ensemble-model-from-file
(net: class ensemble-network, stream: class g2-stream)

Reads the specification of an Ensemble Network object from a file stream.

gnne-write-ensemble-model-to-file
(net: class ensemble-network, stream: class g2-stream)

Saves the specification of an Ensemble Network object into a file stream.

gnne-execute-autoassociative-net
(net: class autoassociative-net, input-vector: class gnne-vector-path-value,
output-vector: class gnne-vector-path-value)

Executes an Autoassociative Network object with an input X vector, and
pushes the output values into an output vector Y.

Parameter Description

net The Ensemble Network object to be executed.

x The input vector X for the network.

y The output vector Y from the network.

Parameter Description

net The Ensemble Network object whose data is to be read.

stream The G2 file stream to read.

Parameter Description

net The Ensemble Network object to be saved.

stream The G2 file stream into which the data is saved.

Parameter Description

net The Autoassociative Network object to be executed.
89

gnne-configure-autoassociative-net
(net: class autoassociative-net, layer-sizes: class integer-array,
transfer-functions: class integer-array, run: symbol)

Configures a Autoassociative Network object with a given specification.

gnne-write-autoassociative-net-to-file
(net: class autoassociative-net, stream: class g2-stream)

Saves the specification of an Autoassociative Network object into a file stream.

gnne-read-autoassociative-net-from-file
(net: class autoassociative-net, stream: class g2-stream)

Reads the specification of an Autoassociative Network object from a file
stream.

input-vector The input vector X for the network.

output-vector The output vector Y from the network.

Parameter Description

Parameter Description

net The Autoassociative Network object to be configured.

layer-sizes The integer array that contains the size parameter of each
layer.

transfer-
functions

The integer array that contains the flag of transfer
functions for each layer.

run A symbol that indicates the running mode for the
Autoassociative Network. It can be either filter-only or
correct-gross-errors.

Parameter Description

net The Autoassociative Network object to be saved.

stream The G2 file stream into which the data is saved.

Parameter Description

net The Ensemble Network object whose data is to be read.

stream The G2 file stream.
90

GNNE Objects
Network Training

gnne-train-neural-network
(blk: class gnne-trainer, net: class neural-network,
ds: class gnne-data-set, output-data: class gnne-data-path-value)

Uses a Trainer object to train a neural network, using a data set.

gnne-execute-fit-tester
(fit-metric-text: text, class gnne-fit-tester, net: class neural-network,
ds: class gnne-data-set, output-data: class gnne-data-path-value)

Tests a neural network, using a data set.

Parameter Description

blk The Trainer object to be executed.

net The network object to be trained.

ds The data set to use for training.

output-data The RMSE error value after the network has been trained.

Parameter Description

fit-metric-test A text that determines the type of test. The options are:
“rmse”, “class”, and “prob”.

net The network object to be tested.

ds A data set containing the inputs and associated output
data against which the neural net fitness is to be tested.
Predictions are placed in the prediction columns of this
data set.

output-data A data path value into which the result of the fitness test
is placed.
91

gnne-execute-sensitivity-tester
(net: class neural-network, ds: class gnne-data-set,
sensitivity-matrix: class gnne-a-matrix)

Calculates the sensitivity of a neural network, given a data set.

Statistical Models

nols-load
(model: class nols-pls-model, stream: class g2-stream)

Loads the PLS parameter exported from text file exported from NOL Studio.

nols-learn
(model: class nols-pls-model, x: class item-array, y: class item-array,
nfactor: integer)

Builds the PLS model from data matrix x and y with a specified number of
internal factors. The data matrix should be an item array of float arrays. This
method requires the NOL Studio remote process and statistical calculator.

Parameter Description

net The network object to be tested.

ds The data set to be tested.

sensitivity-
matrix

A matrix that holds the sensitivity values.

Parameter Description

model The PLS model whose parameters are loaded.

stream The g2-stream from the text file.

Parameter Description

model The PLS model whose parameters are loaded.

x The input matrix. The class of the element in the item
array is float-array.

y The input matrix. The class of the element in the item
array is float-array. The x and y should have the same
array-length

nfactor The number of factor on hidden layer.
92

GNNE Objects
nols-rescaler-input-vector
(model: class nols-pls-model, input-vector: class float-array,
output-vector: class float-array)

Scales the input data before feeding it into the PLS model. The PLS model
stores the scale weights internally. The method is called before model
evaluation.

nols-rescaler-output-vector
(model: class nols-pls-model, input-vector: class float-array,
output-vector: class float-array)

Scales the output data back to their normal range after PLS model execution.
The PLS model stores the scale weights internally.

nols-execute
(model: class nols-pls-model, x: class float-array)
-> value: class float-array

Executes a PLS model with the given input data x and returns the output.

Parameter Description

model The PLS model which provide the scale weights.

input-vector The raw vector.

output-vector The scaled vector.

Parameter Description

model The PLS model which provide the scale weights.

input-vector The raw vector.

output-vector The scaled vector.

Parameter Description

model The PLS model to be evaluated.

x The scaled input vector.

Return Value Description

value Returns output vector. The value need to be rescaled back
to their normal range.
93

nols-execute
(model: class nols-pls-model, x: class item-array, y: class item-array)

Executes a PLS model with the given input data matrix x, where y provides
the resulting matrix. The data matrix should be an item array of float arrays.

nols-load
(model: class nols-pca-model, stream: class g2-stream)

Loads the PCA parameter exported from the NOL Studio projection chart.

nols-rescaler-input-vector
(model: class nols-pca-model, input-vector: class float-array,
output-vector: class float-array)

Scales the input data before feeding it into the PCA model. The PCA model
stores the scale weights internally. The method is called before model
evaluation.

Parameter Description

model The PLS model to be evaluated.

x The scaled input matrix.

y The scaled output matrix.

Parameter Description

model The PCA model whose parameters are loaded.

stream The g2-stream from the text file.

Parameter Description

model The PCA model which provide the scale weights.

input-vector The raw vector.

output-vector The scaled vector.
94

GNNE Objects
nols-execute
(model: class nols-pca-model, x: class float-array, pcs: class float-array)

Runs the scaled input data through the PCA model. Pcs provides the results
of the calculation.

nols-execute
(model: class nols-pca-model, x: class float-array, pcs: class float-array,
nfactor: integer)

Calculates first nfactor principal components for the scaled input. Pcs
provides the results of the calculation.

nols-show-pca-spe-chart
(model: class nols-pca-model, win: class g2-window)
-> handle: integer

Shows the squared prediction error chart in given window. This procedure
can only be called if the model data is loaded in this model.

Parameter Description

model The PCA model to be evaluated.

x The scaled input vector.

pcs The calculated principal components. The number of
components depends on the default number of
component value stored in PCA model.

Parameter Description

model The PCA model to be evaluated.

x The scaled input vector.

pcs The calculated principal components.

nfactor The number of components.

Parameter Description

model The PCA model.

win The window object in which the chart will show
95

nols-show-pca-single-pc-chart
(model: class nols-pca-model, pcIndex: integer, win: class g2-window)
-> handle: integer

Shows the single principal component in the given window. This procedure
can only be called if the model data is loaded in this model.

nols-show-pca-2d-pc-chart
(model: class nols-pca-model, pc1Index: integer, pc2Index: integer,
win: class g2-window)
-> handle: integer

Shows the two dimensional principal component chart in the given window.
This procedure can only be called if the model data is loaded in this model.

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.

Parameter Description

model The PCA model.

pcIndex The index of the principal component.

win The window object in which the chart will show

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.

Parameter Description

model The PCA model.

pc1Index The index of the first principal component.

pc2Index The index of the second principal component.

win The window object in which the chart will show

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.
96

GNNE Objects
nols-show-pca-3d-pc-chart
(model: class nols-pca-model, pc1Index: integer, pc2Index: integer,
pc3Index: integer, win: class g2-window)
-> handle: integer

Shows the three dimensional principal component chart in the given window.
This procedure can only be called if the model data is loaded in this model.

nols-show-pca-loading-chart
(model: class nols-pca-model, pcIndex: integer, win: class g2-window)
-> handle: integer

Shows the loading vector for given principal component in the given window.
This procedure can only be called if the model data is loaded in this model.

Parameter Description

model The PCA model.

pc1Index The index of the first principal component.

pc2Index The index of the second principal component.

pc3Index The index of the third principal component.

win The window object in which the chart will show

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.

Parameter Description

model The PCA model.

pcIndex The index of the principal component, whose loading
vector will be shown.

win The window object in which the chart will show

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.
97

nols-create-pca-spe-monitoring-chart
(model: class nols-pca-model, nshow: integer, win: class g2-window)
-> handle: integer

Creates the squared prediction error monitoring chart based on the SPE
statistics in given window. This procedure can be called without the model
data loaded in this model.

nols-create-pca-pc-monitoring-chart
(model: class nols-pca-model, pcIndex: integer, nshow: integer,
win: class g2-window)
-> handle: integer

Creates the single principal component chart based on the PC statistics in the
given window. This procedure can be called without the model data loaded in
this model.

Parameter Description

model The PCA model.

nshow The number of data point shown in the chart.

win The window object in which the chart will show

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.

Parameter Description

model The PCA model.

pcIndex The index of the principal component.

nshow The number of data point shown in the chart.

win The window object in which the chart will show

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.
98

GNNE Objects
nols-create-pca-2d-pc-monitoring-chart
(model: class nols-pca-model, pc1Index: integer, pc2Index: integer,
nshow: integer, win: class g2-window)
-> handle: integer

Creates the two dimensional principal component chart based on the statistics
of these two PCs in the given window. This procedure can be called without
the model data loaded in this model.

nols-create-pca-3d-pc-monitoring-chart
(model: class nols-pca-model, pc1Index: integer, pc2Index: integer,
pc3Index: integer, nshow: integer, win: class g2-window)
-> handle: integer

Creates the three dimensional principal component chart based on the
statistics of these three PCs in the given window. This procedure can be called
without the model data loaded in this model.

Parameter Description

model The PCA model.

pc1Index The index of the first principal component.

pc2Index The index of the second principal component.

nshow The number of data point shown in the chart.

win The window object in which the chart will show

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.

Parameter Description

model The PCA model.

pc1Index The index of the first principal component.

pc2Index The index of the second principal component.

pc3Index The index of the third principal component.

nshow The number of data point shown in the chart.

win The window object in which the chart will show
99

nols-show-pca-pc-point-in-chart
(model: class nols-pca-model, chart: integer, n: integer,
input-vector: class float-array, pcIndex: integer, win: class g2-window)

Shows a single point in the single PC monitoring chart. The PC point is
calculated from the given input vector. The chart handle points to the chart
where the point will be added. This procedure is called after the monitoring
chart has been created.

nols-show-pca-pc-point-in-2d-chart
(model: class nols-pca-model, chart: integer, n: integer,
input-vector: class float-array, pc1Index: integer, pc2Index: integer,
win: class g2-window)

Shows a single point in the two dimensional PC monitoring chart. The PC
point is calculated from the given input vector. The chart handle points to the
chart where the point will be added. This procedure is called after the
monitoring chart has been created.

Return Value Description

handle Returns the chart handle. This handle can be used to refer
to the chart.

Parameter Description

model The PCA model.

chart The chart handle point to the chart where the point will
be added.

n The index of the data point in the chart.

input-vector The input vector used to calculate the PC point. This
should be unscaled real data.

pcIndex The index of the principal component.

win The window object in which the chart shows

Parameter Description

model The PCA model.

chart The chart handle point to the chart where the point will
be added.

n The index of the data point in the chart.
100

GNNE Objects
nols-show-pca-pc-point-in-3d-chart
(model: class nols-pca-model, chart: integer, n: integer,
input-vector: class float-array, pc1Index: integer, pc2Index: integer,
pc3Index: integer,win: class g2-window)

Shows a single point in the three dimensional PC monitoring chart. The PC
point is calculated from the given input vector. The chart handle points to the
chart where the point will be added. This procedure is called after the
monitoring chart has been created.

input-vector The input vector used to calculate the PC point. This
should be unscaled real data.

pc1Index The index of the first principal component.

pc2Index The index of the second principal component.

win The window object in which the chart shows

Parameter Description

Parameter Description

model The PCA model.

chart The chart handle point to the chart where the point will
be added.

n The index of the data point in the chart.

input-vector The input vector used to calculate the PC point. This
should be unscaled real data.

pc1Index The index of the first principal component.

pc2Index The index of the second principal component.

pc3Index The index of the third principal component.

win The window object in which the chart shows
101

Interaction with NOL Studio

Remote Process Management

nols-launch-remote-process
()
-> id: float

Uses the default nols-settings to launch the remote process for calculating
NOL Studio models.

nols-launch-remote-process-by-settings
(settings: class nols-setting)
-> id: float

Uses the specified nols-settings object to launch the remote process for
calculating NOL Studio models.

Return Value Description

id The process ID for the started remote process.

Parameter Description

setting The nols-settings object that provides information
such as host name and listening port for
launching remote process.

Return Value Description

id The process ID for the started remote process.
102

Interaction with NOL Studio
nols-launch-remote-process-with-message
(settings: class nols-setting, client: class ui-client-item)
-> id: float

Uses the specified nols-settings to launch the remote process for calculating
NOL Studio models. If it is called within Telewindows, a message dialog
shows the launching status.

nols-kill-remote-process
()

Kills the remote process used for calculating NOL Studio models.

nols-launch-nolstudio-by-setting
(settings: class nols-setting, client:class ui-client-item)
-> id: float

Uses the specified nols-settings to launch the remote process for calculating
NOL Studio models. If it is called within Telewindows, a message dialog
shows the launching status.

Parameter Description

setting The nols-settings object that provides information
such as host name and listening port for
launching remote process.

client The window object used for launching message
dialog.

Return Value Description

id The process ID for the started remote process.

Parameter Description

setting The nols-settings object that provides information
such as host name and listening port for
launching remote process.

client The window object provided as an owner for this
NOL Studio console and used for launching
message dialog.

Return Value Description

id The process ID for the started remote process.
103

nols-kill-remote-studio
(client: class ui-client-item)
-> id: float

Kills the remote NOL Studio console owned by the specified window object.

Data Management

gnne-data-set

gnne-data-set::gnne-export-to-studio
(ds: class gnne-data-set, win: class g2-window)

Exports the data set object into NOL Studio owned by the window object as a
raw data series. The variable name is created automatically for each variable
inside NOL Studio.

Parameter Description

client The window object provided as an owner for this
NOL Studio console and used for launching
message dialog.

Return Value Description

id The process ID for the NOL Studio process.

Parameter Description

ds The data matrix to be passed into NOL Studio.
The input and output of the data set are merged
together with output appended at the end of
input variables.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
104

Interaction with NOL Studio
NOL Studio Data Objects

nols-load-project
(pjDir: text, pjName: text, win: class g2-window)

Loads a project into NOL Studio owned by the window object. The project is
specified by the project name and path.

nols-export-dataseries
(dsName: text, X: class item-array, win: class g2-window)

Exports a matrix into NOL Studio owned by the window object as a raw data
series. The variable name is created automatically for each variable inside
NOL Studio.

Parameter Description

pjDir The directory name where the project file is
located as a text string.

pjName The file name of the project file.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

dsName The name of the data series in the NOL Studio
console as a text string.

X An item-array with each item as an equal length
float-array, This item-array is served as the data
matrix, where each float-array is a row vector.

win Window object provided as an owner for this
NOL Studio console, and used for launching any
message dialog.
105

nols-delete-dataseries
(dsName: text, win: class g2-window)

Deletes a raw data series in NOL Studio owned by the window object. The
process fails if the raw data has been preprocessed.

nols-get-raw-dataseries-names
(win: class g2-window)
-> data-series: sequence

Returns a sequence of text strings, which are the names of raw data series in
the NOL Studio owned by the window object.

Parameter Description

dsName The name of the data series in NOL Studio
console as a text string.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

data-series A sequence of text strings, which are names of
raw data series in the NOL Studio console.
106

Interaction with NOL Studio
nols-get-processed-dataseries-names
(processName: symbol, win: class g2-window)
-> data-series: sequence

Returns a sequence of text strings, which are the names of data series
preprocessed by the preprocessor with given name in the NOL Studio owned
by the window object.

nols-show-data-in-line-chart
(X: class item-array, win: class g2-window)

Passes the data matrix into NOL Studio as a raw data series and shows all
variables in that data series in a line chart. The NOL Studio is owned by the
window object.

Parameter Description

processName Provides the text string as the name of the
preprocessor in NOL Studio console.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

data-series A sequence of text strings, which are names of
preprocessed data series in the NOL Studio
console. The data series are preprocessed by the
preprocessor with given name.

Parameter Description

X An item-array with each item as an equal length
float-array, This item-array is served as the data
matrix, where each float-array is a row vector.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
107

nols-show-single-line-chart
(X: class float-array, win: class g2-window)

Passes the data array into NOL Studio as a single variable raw data series and
show this variable in a line chart. The NOL Studio is owned by the window
object.

nols-show-data-in-projection-chart
(X: class item-array, win: class g2-window)

Passes the data matrix into NOL Studio as a raw data series and shows all
variables in a projection chart. The NOL Studio is owned by the window
object.

Parameter Description

X A float-array is served as a single column of a
data matrix. When passed into NOL Studio, the
float-array is a single variable data series.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

X An item-array with each item as an equal length
float-array, This item-array serves as the data
matrix, where each float-array is a row vector.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
108

Interaction with NOL Studio
nols-show-data-in-xy-chart
(X: class float-array, Y: class float-array, win: class g2-window)

Passes the two data arrays into NOL Studio, merges them as a raw data series,
and shows one variable against the other in a X-Y chart. The NOL Studio is
owned by the window object.

gnne-show-inputs-in-line-chart
(ds: class gnne-data-set, win: class g2-window)

Passes the data matrix of the input-data-set of a gnne-data-set into NOL
Studio as a raw data series and shows all variables in that data series in a line
chart. The NOL Studio is owned by the window object.

Parameter Description

X A float-array is served as a single column of a
data matrix. When passed into NOL Studio, the
float-array is the first variable of a two-variable
data series.

Y A float-array is served as a single column of a
data matrix. When passed into NOL Studio, the
float-array is the second variable of a two-variable
data series.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

ds The gnne-data-set whose input data set will be
exported into NOL Studio and shown in a line
chart.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
109

gnne-show-outputs-in-line-chart
(ds: class gnne-data-set, win:class g2-window)

Passes the data matrix of the output data set of a gnne-data-set into NOL
Studio as a raw data series and show all variables in that data series in a line
chart. The NOL Studio is owned by the window object.

gnne-show-input-variable-in-line-chart
(ds: class gnne-data-set, index: integer, win: class g2-window)

Passes one of the variables in the input data set of a gnne-data-set into NOL
Studio as a single variable raw data series and shows that variable in a line
chart. The index of the variable in the input data set is given, and the NOL
Studio is owned by the window object.

gnne-show-output-variable-in-line-chart
(ds: class gnne-data-set, index: integer, win: class g2-window)

Passes one of the variables in the output data set of a gnne-data-set into NOL
Studio as a single variable raw data series and shows that variable in a line
chart. The index of the variable in the input data set is given, and the NOL
Studio is owned by the window object.

Parameter Description

ds The gnne-data-set whose output data set will be
exported into NOL Studio and shown in a line
chart.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

ds The gnne-data-set where one of the variables in
input data set will be exported into NOL Studio
and shown in a line chart.

index The index of the variable in the input data set.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
110

Interaction with NOL Studio
gnne-show-inputs-in-projection-chart
(ds: class gnne-data-set, win: class g2-window)

Passes the data matrix of the input data set of a gnne-data-set into NOL
Studio as a raw data series and shows all variables in a projection chart. The
NOL Studio is owned by the window object.

Neural Networks

Predictive Model

nols-get-predictive-model-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of predictive models in NOL
Studio. The NOL Studio is owned by the window object.

Parameter Description

ds The gnne-data-set where one of the variables in
output data set will be exported into NOL Studio
and shown in a line chart.

index The index of the variable in the output data set.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

ds The gnne-data-set whose input data set will be
exported into NOL Studio and shown in a
projection chart.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
111

nols-get-predictive-model
(model: class nols-predictive-model, modelName: text, win: class g2-window)

Loads the model parameters from a predictive model in NOL Studio into the
nols-predictive-model object. The NOL Studio is owned by the window object.

nols-show-predictive-model-prediction
(modelName: text, win: class g2-window)

Shows the predicted vs. actual chart for the predictive model with the
specified name in the NOL Studio. The NOL Studio is owned by the window
object.

nols-validate-predictive-model
(modelName: text, X: class item-array, Y: class item-array,
win: class g2-window)

Uses the given input and output data to validate the predictive model with
the specified name in NOL Studio. NOL Studio is owned by the window
object. X and Y are item-arrays of float-arrays. One float-array is a row of data,
and every float-array in one item-array should have the same array-length.
You don’t need to supply the variable name. The order of columns should
match the input and output of the predictive model. X and Y should have the
same array length.

Return Value Description

models A sequence of text strings, which are names of
predictive models in the NOL Studio console.

Parameter Description

model The model object that gets its parameters from the
mode in NOL Studio.

modelName The model name for the model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

modelName The model name for the model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
112

Interaction with NOL Studio
Optimization

nols-get-optimization-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of optimizations in the NOL
Studio. The NOL Studio is owned by the window object.

Parameter Description

modelName The model name for the model in NOL Studio.

X An item-array of float-arrays. This is the input
matrix for validation. The float array length
should be the same as the length of input
variables.

Y An item-array of float-arrays. This is the output
matrix for validation. The float array length
should be the same as the length of output
variables.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

models A sequence of text strings, which are names of
optimizations in the NOL Studio console.
113

nols-get-optimization
(model: class nols-optimization, modelName: text, win: class g2-window)

Loads the parameters from a optimization in the NOL Studio into the nols-
optimization object. The optimization is specified by the model name as a
input. The NOL Studio is owned by the window object.

Backpropagation Net Model

nols-get-bpn-model-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of backpropagation net models in
the NOL Studio. The NOL Studio is owned by the window object.

Parameter Description

model The optimization model object that gets its
parameters from the optimization in NOL Studio.

modelName The model name for the optimization in NOL
Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

models A sequence of text strings, which are names of
backpropagation net models in the NOL Studio
console.
114

Interaction with NOL Studio
gnne-import-parameters-from-studio
(net: class bpn, model-name: text, win: class g2-window)
-> status: integer

Loads the model parameters from a backpropagation net model in the NOL
Studio into the bpn object. The model is specified by the given model name.
The NOL Studio is owned by the window object.

nols-show-bpn-model-prediction
(modelName: text, win: class g2-window)

Shows the predicted vs. actual chart for the backpropagation net model with
specified name in the NOL Studio. The NOL Studio is owned by the window
object.

Parameter Description

model The bpn object that gets its parameters from the
backpropagation net model in NOL Studio.

modelName The model name for the backpropagation net
model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the bpn object, returns 1,
otherwise, returns -1.

Parameter Description

modelName The model name for the backpropagation net
model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
115

nols-validate-bpn-model
(modelName: text, X: class item-array, Y: class item-array,
win: class g2-window)

Uses the given input and output data to validate the backpropagation net
model with specified name in the NOL Studio. The NOL Studio is owned by
the window object. X and Y are item-arrays of float-arrays. One float-array is a
row of data, and every float-array in one item-array should have the same
array-length. You don’t need to supply the variable name. The order of
columns should match the input and output of the backpropagation net
model. X and Y should have the same array length.

Radial Basis Function Net Model

nols-get-rbfn-model-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of radial basis net models in the
NOL Studio. The NOL Studio is owned by the window object.

Parameter Description

modelName The model name for the backpropagation net
model in NOL Studio.

X An item-array of float-arrays. This is the input
matrix for validation. The float array length
should be the same as the length of input
variables.

Y An item-array of float-arrays. This is the output
matrix for validation. The float array length
should be the same as the length of output
variables.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
116

Interaction with NOL Studio
gnne-import-parameters-from-studio
(net: class rbfn, model-name: text, win: class g2-window)
-> status: integer

Loads the model parameters from a radial basis net model in the NOL Studio
into the rbfn object. The model is specified by the given model name. The NOL
Studio is owned by the window object.

Return Value Description

models A sequence of text strings, which are names of
radial basis net models in the NOL Studio
console.

Parameter Description

model The rbfn object that gets its parameters from the
radial basis net in NOL Studio.

modelName The model name for the radial basis net in NOL
Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the rbfn object, returns 1,
otherwise, returns -1.
117

nols-show-rbfn-model-prediction
(modelName: text, win: class g2-window)

Shows the predicted vs. actual chart for the radial basis net model with
specified name in the NOL Studio. The NOL Studio is owned by the window
object.

nols-validate-rbfn-model
(modelName: text, X: class item-array, Y: class item-array,
win: class g2-window)

Uses the given input and output data to validate the radial basis net model
with the specified name in the NOL Studio. The NOL Studio is owned by the
window object. X and Y are item-arrays of float-arrays. One float-array is a
row of data, and every float-array in one item-array should have the same
array-length. You don’t need to supply the variable name. The order of
columns should match the input and output of the radial basis net model. X
and Y should have the same array length.

Parameter Description

modelName The model name for the radial basis net model in
NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

modelName The model name for the radial basis net model in
NOL Studio.

X An item-array of float-arrays. This is the input
matrix for validation. The float array length
should be the same as the length of input
variables.

Y An item-array of float-arrays. This is the output
matrix for validation. The float array length
should be the same as the length of output
variables.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
118

Interaction with NOL Studio
Autoassociative Net Model

nols-get-aan-model-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of autoassociative net models in
the NOL Studio. The NOL Studio is owned by the window object.

gnne-import-parameters-from-studio
(net: class autoassociative-net , model-name: text, win: class g2-window)
-> status: integer

Loads the model parameters from a autoassociative net model in the NOL
Studio into the autoassociative-net object. The model is specified by the given
model name. The NOL Studio is owned by the window object.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

models A sequence of text strings, which are names of
autoassociative net models in the NOL Studio
console.

Parameter Description

model The autoassociative-net object that gets its
parameters from the autoassociative net in NOL
Studio.

modelName The model name for the autoassociative net in
NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
119

nols-show-aan-model-prediction
(modelName: text, win: class g2-window)

Shows the predicted vs. actual chart for the autoassociative net model with
the specified name in the NOL Studio. The NOL Studio is owned by the
window object.

nols-validate-aan-model
(modelName: text, X: class item-array, win: class g2-window)

Uses the given data matrix to validate the autoassociative net model with
specified name in the NOL Studio. The NOL Studio is owned by the window
object. X is an item-array of float-arrays. One float-array is a row of data, and
every float-array in one item-array should have the same array-length. You
don’t need to supply the variable name. The order of columns should match
the variables used in the autoassociative net model.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the autoassociative-net
object, returns 1, otherwise, returns -1.

Parameter Description

modelName The model name for the autoassociative net
model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

modelName The model name for the autoassociative net
model in NOL Studio.

X An item-array of float-arrays. This is matrix as the
input data for validation. The float array length
should be the same as the length of input
variables.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
120

Interaction with NOL Studio
Rho Net Model

nols-get-rho-model-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of rho net models in the NOL
Studio. The NOL Studio is owned by the window object.

gnne-import-parameters-from-studio
(net: class rho-net , model-name: text, win: class g2-window)
-> status: integer

Loads the model parameters from a rho net model in the NOL Studio into the
rho-net object. The model is specified by the given model name. The NOL
Studio is owned by the window object.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

models Provides the sequence of text strings, which are
names of rho net models in the NOL Studio
console.

Parameter Description

model The rho-net object that get its parameters from the
rho net in NOL Studio.

modelName The model name for the rho net in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the rho-net object,
returns 1, otherwise, returns -1.
121

nols-show-rho-model-prediction
(modelName: text, win: class g2-window)

Shows the predicted vs. actual chart for the rho net model with specified
name in the NOL Studio. The NOL Studio is owned by the window object.

Ensemble Network

gnne-import-parameters-from-studio
(net: class ensemble-network, model-name: text, win: class g2-window)
-> status: integer

Loads the model parameters from a predictive model in the NOL Studio into
the ensemble-network object. The model is specified by the given model
name. The NOL Studio is owned by the window object.

Parameter Description

modelName The model name for the rho net model in NOL
Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

model The ensemble-network object that get its
parameters from the predictive model in NOL
Studio.

modelName The model name for the predictive model in NOL
Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the ensemble-network
object, returns 1, otherwise, returns -1.
122

Interaction with NOL Studio
Partial Least Square Model

nols-get-pls-model-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of partial least square models in
the NOL Studio. The NOL Studio is owned by the window object.

gnne-import-parameters-from-studio
(model: class nols-pls-model, model-name: text, win: class g2-window)
-> status: integer

Loads the model parameters from a partial least square model in the NOL
Studio into the nols-pls-model object. The model is specified by the given
model name. The NOL Studio is owned by the window object.

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

models Provides the sequence of text strings, which are
names of partial least square models in the NOL
Studio console.

Parameter Description

model The nols-pls-model object that get its parameters
from the partial least square model in NOL
Studio.

modelName The model name for the partial least square
model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.
123

nols-show-pls-model-prediction
(modelName: text, win: class g2-window)

Shows the predicted vs. actual chart for the partial least square model with
specified name in the NOL Studio. The NOL Studio is owned by the window
object.

nols-validate-pls-model
(modelName: text, X: class item-array, Y: class item-array,
win: class g2-window)

Uses the given input and output data to validate the partial least square
model with specified name in the NOL Studio. The NOL Studio is owned by
the window object. X and Y are item-arrays of float-arrays. One float-array is a
row of data, and every float-array in one item-array should have the same
array-length. You don’t need to supply the variable name. The order of
columns should match the input and output of the partial least square model.
X and Y should have the same array length.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the nols-pls-model object,
returns 1, otherwise, returns -1.

Parameter Description

modelName The model name for the partial least square
model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

modelName The model name for the partial least square
model in NOL Studio.

X An item-array of float-arrays. This is the input
matrix for validation. The float array length
should be the same as the length of input
variables.
124

Interaction with NOL Studio
Principal Component Analysis Model

nols-get-pca-model-names
(win: class g2-window)
-> models: sequence

Returns a sequence that contains the name of principal component analysis
models in the NOL Studio. The NOL Studio is owned by the window object.

Y An item-array of float-arrays. This is the output
matrix for validation. The float array length
should be the same as the length of output
variables.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

Parameter Description

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

models A sequence of text strings, which are names of
principal component analysis models in the NOL
Studio console.
125

gnne-import-parameters-from-studio
(model: class nols-pca-model, model-name: text, win: class g2-window)
-> status: integer

Loads the model parameters from a principal component analysis model in
the NOL Studio into the nols-pls-model object. The model is specified by the
given model name. The NOL Studio is owned by the window object.

nols-validate-pca-model
(modelName: text, X: class item-array, win: class g2-window)

Uses the given data matrix to validate the principal component analysis
model with specified name in the NOL Studio. The NOL Studio is owned by
the window object. X is an item-array of float-arrays. One float-array is a row
of data, and every float-array in one item-array should have the same array-
length. You don’t need to supply the variable name. The order of columns
should match the variables used in the principal component analysis model.

Parameter Description

model The nols-pca-model object that get its parameters
from the principal component analysis model in
NOL Studio.

modelName The model name for the principal component
analysis model in NOL Studio.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the nols-pca-model
object, returns 1, otherwise, returns -1.

Parameter Description

modelName The model name for the principal component
analysis model in NOL Studio.
126

GNNE Predictive Model
GNNE Predictive Model
The APIs are organized by the functionality.

Model Import and Export

gnne-load-predictive-model
(PredictiveModel: class gnne-predictive-model)
-> status: truth-value

Loads the model variable information and network parameters from an XML
file. Before calling this method, you need to set the file name and directory
path to the attribute of the model object.

gnne-save-predictive-model
(Model: class gnne-predictive-model, Stream: class g2-stream)
-> status: truth-value

Saves the model variable information and network parameters into an XML
file. You specify the file name and directory path as attributes of the model
object.

X An item-array of float-arrays. This is matrix as the
input data for validation. The float array length
should be the same as the length of input
variables.

win The window object provided as an owner for this
NOL Studio console and used for launching any
message dialog.

Parameter Description

Parameter Description

PredictiveModel The model object into which the variable information and
network parameters should be imported.

Return Value Description

status A status flag. If model parameters are
successfully loaded into the model object, returns
true, otherwise, returns false.
127

Model Properties

gnne-reset
(Model: class gnne-predictive-model)

Resets all model parameters to their default state, just as if it had been cloned
from the palette.

gnne-get-name
(Model: class gnne-predictive-model)
-> name: text

Returns the name of the model object.

gnne-get-comment
(Model: class gnne-predictive-model)
-> comment: text

Returns the comments of the model object.

Parameter Description

Model The model object into which the variable information and
network parameters should be exported.

Stream A G2 stream into which to write the model information.

Return Value Description

status A status flag. Returns true if model parameters
are successfully exported from the model object;
otherwise, returns false.

Parameter Description

Model The model object to reset.

Parameter Description

Model The Model object.

Return Value Description

name The name of the model object.
128

GNNE Predictive Model
gnne-get-variables
(Model: class gnne-predictive-model)
-> variables: sequence

Returns a sequence of model variables, which include inputs and outputs.

gnne-set-external-variables
(Model: class gnne-predictive-model, Variables: sequence)

Sets the inputs and outputs of the predictive models to the variables and
parameters in G2. This method throws an error when:

• Not all inputs and outputs of the predictive model are assigned to a
variable or a parameter.

• The name or tag of one of the variable structures does not match any input
or output.

• The variable or parameter class of one of the variable structures is not a
quantitative variable or parameter.

Parameter Description

Model The model object.

Return Value Description

comment The comment string of the model object.

Parameter Description

Model The Model object whose variables to get.

Return Value Description

variables The sequence of model variables.
129

gnne-get-model-statistics
(Model: class gnne-predictive-model)
-> model statistics: structure

Returns a structure of model statistics.

gnne-has-time-stamps
(Model: class gnne-predictive-model)
-> flag: true-value

Determines whether a model has been trained based on a data series with
time stamps.

Parameter Description

Model The model object whose variables to set.

Variables A sequence of structures, where each structure represents
one variable. The syntax for each structure is:

structure (
variable-name: text,
variable-tag: text,
classification: text, ("input", "output", "actual")
variable-or-parameter: class variable-or-parameter)

The structure must contain variable-name or tag or both.

Parameter Description

Model The model object whose statistics to get.

Return Value Description

model statistics A structure of model statistics. For example:

structure (output-statistics: sequence
(structure (variable-name: "Output1",

training: structure (rmse: 0.086,
corrcoef: 0.982),

testing: structure (rmse: 0.091,
corrcoef: 0.964))))

Parameter Description

Model The Model object to test.
130

GNNE Predictive Model
gnne-get-output-variable-statistics
(VarTable: class gnne-variable-table, VariableName: text, VariableTag: text))
-> success: truth-value, statistics: structure

Returns the output statistics for online retraining. This method can be used to
decide whether the retraining is valid.

Model Execution

gnne-set-variable-value-by-name
(Model: class gnne-predictive-model, VariableName: text, Value: float,
G2Time: quantity)

Sets the variable value for a model. The value is set to a data buffer, which is
included in a variable table. After enough input data are set to the data buffer,
you can calculate the output.

Return Value Description

flag Returns true when the model has been trained
based on data series with time stamps.

Parameter Description

VarTable The variable table on the subworkspace of the GNNE
Predictive Model.

VariableName The name of the variable for which to get statistics.

VariableTag The tag of the variable for which to get statistics.

Return Value Description

success Returns true if the variable and its output
statistics are valid.

statistics The output statistics, which is the result of online
retraining. For example:

structure
(rmse: rmse,
corrcoef: correlation)
131

gnne-set-variable-value-by-name
(Model: class gnne-predictive-model, VariableName: text, Value: float)

Sets the variable value for a model. The value is set to a data buffer, which is
included in a variable table. After enough input data are set to the data buffer,
you can calculate the output.

gnne-set-variable-value-by-tag
(Model: class gnne-predictive-model, VariableTag: text, Value: float,
G2Time: quantity)

Sets the variable value for a model. The value is set to a data buffer, which is
included in a variable table. After enough input data are set to the data buffer,
you can calculate the output.

Parameter Description

Model The Model object whose variable value to set.

VariableName The input variable name.

Value The value to be set to the data buffer.

G2Time The time stamp for the data value. If the original data
series is row-based, use next method.

Parameter Description

Model The Model object whose variable value to set.

VariableName The input variable name.

Value The value to be set to the data buffer.

Parameter Description

Model The Model object whose variable value to set.

VariableName The input variable name.

Value The value to be set to the data buffer.

G2Time The time stamp for the data value. If the original data
series is row-based, use next method.
132

GNNE Predictive Model
gnne-set-variable-value-by-tag
(Model: class gnne-predictive-model, VariableTag: text, Value: float)

Sets the variable value for a model. The value is set to a data buffer, which is
included in a variable table. After enough input data are set to the data buffer,
you can calculate the output.

gnne-calculate-outputs-for-row
(Model: class gnne-predictive-model)
-> output values: sequence

Calculates the outputs of a row-based model. The output values are returned
in a sequence of structures. If the output variables are mapped to G2 variables
and parameters, these variables are updated as well.

This method throws an error if:

• The model is not initialized.

• The required input data is not available.

• There is a calculation error.

Parameter Description

Model The Model object whose variable value to set.

VariableName The input variable tag.

Value The value to be set to the data buffer.

Parameter Description

Model The Model object whose outputs to calculate.

Return Value Description

output values A sequence of structures, where each structure
represents an output variable. The syntax for each
structure is:

structure
(variable-name: text,
variable-tag: text,
unit: text,
variable-value: quantity)

The structure includes the variable-name,
variable-tag, and unit only if they are available.
133

gnne-calculate-outputs-for-time
(Model: class gnne-predictive-model, G2Time: quantity)
-> output values: sequence

Calculates the outputs for a time-based model. The output values are returned
as a sequence of structures. If the output variables are mapped to G2 variables
and parameters, the variables are updated as well.

For a time-based model, you can request a time that does not necessarily
correspond to a specific input. In this case, the output values are interpolated
between the closest time steps.

This method throws an error if:

• The model is not initialized.

• The required input data, including all delayed values, is not available.

• There is a calculation error.

gnne-calculate-online-model-statistics
(Model: class gnne-predictive-model)
-> model statistics: structure

Calculates the online model statistics for the model output variables.

Parameter Description

Model The model object whose outputs to calculate.

Return Value Description

output values A sequence of structures, where each structure
represents one output variable. The syntax for
each structure is:

structure (
variable-name: text,
variable-tag: text,
unit: text,
g2-time: quantity,
variable-value: quantity)

The structure includes the variable-name,
variable-tag, and unit only if they are available.

Parameter Description

Model The model object whose statistics to calculate.
134

GNNE Predictive Model
Model Retraining

gnne-train-predictive-model
(Model: class gnne-predictive-model, Xmatrix : sequence,
Ymatrix: sequence, Time: float, Autostop: truth-value,
InitialTraining: truth-value, display: truth-value)

Trains the model online with pre-formatted input and output matrices. This
method initially sets the attribute gnne-complete-training of the model to
false, then spawns the training process through the nols-gateway. When the
training finishes, gnne-complete-training is set to true. If during the training an
error occurs, the gnne-has-error attribute of the model is set to true and the
error message is set to gnne-error-message.

Return Value Description

model statistics A structure of model statistics. For example:

structure
(output-statistics: sequence (structure

(variable-name: "Output1",
training: structure (rmse: 0.086,

corrcoef: 0.982),
testing: structure (rmse: 0.091,

corrcoef: 0.964))))

Parameter Description

Model The Model object to be trained.

Xmatrix A sequence of float-arrays as the input matrix. This
matrix must be formatted based on the input variables
and their delays. The dimension of this matrix should be
fit for the ensemble net structure in the GNNE Predictive
Model.

Ymatrix A sequence of float-array as the output matrix.

Time The number of minutes for training the model.

Autostop The flag indicates whether the training process
automatically stops based on a converge criterion. When
false, the training process continues to the time set by the
time argument.
135

gnne-train-predictive-model
(Model: class gnne-predictive-model, DataFiles: sequence, Time: float,
Autostop: truth-value, InitialTraining: truth-value, Display: truth-value)

Trains the model online with data series in .ds formatted files. This method
initially sets the attribute gnne-complete-training of the model to false, then
spawns the training process through the nols-gateway. When the training
finishes, gnne-complete-training is set to true. If during the training an error
occurs, the gnne-has-error attribute of the model is set to true and the error
message is set to gnne-error-message.

InitialTraining When true, the model weights are initialized to a set of
random number. When false, the training process starts
with the existing model weights.

Display When true, a training console with error information is
displayed during training.

Parameter Description

Parameter Description

Model The Model object to be trained.

DataFiles A text sequence, where the text string gives the file
names for the data series. The data files has to be in a
predefined .ds format.

Time This argument set how many minutes you want to spend
to train this model.

Autostop The flag indicates whether the training process
automatically stops based on a converge criterion. When
false, the training process continues to the time set by the
time argument.

InitialTraining When true, the model weights are initialized to a set of
random number. When false, the training process starts
with the existing model weights.

Display When true, a training console with error information is
displayed during training.
136

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
acquiring data
actions, performing
Application Programmer? Interface (API)

data sets
GNNE predictive model
network training
neural networks
reference
statistical models
vector and matrix

Autoassociative Net
file format

B
Backpropagation Net (BPN)

block
file format

block reference

C
customer support services

D
data

acquisition
inferencing

data control blocks
data objects

Data Pair
Data Path Value
Data Set
introduction to
reference
Vector Path Value

Data Pair
Data Path Value
data processing
Data Set
data sets
API procedures
customizing text format of
Data Set object
deciding whether a data pair is novel
editing
entering and viewing
saving and loading data
setting dimensions of
text format of

E
Ensemble Net (ENN)

block
file format

F
file formats

Autoassociative Net
Backpropagation Net
Ensemble Network
Predictive Model
Radial Basis Function Net
Rho Network

file operations, GNNE feature

G
G2 Neural Network Engine

See GNNE
getting

See fetching
GNNE

accessing API
features
integrating with
integrating with NOL Studio
introduction to
module integration
objects
137

overview of
reference

palettes
GNNE Predictive Model

API
block

M
matrix API
module integration

N
neural networks

API
general
network training

Autoassociative Net
Backpropagation Net (BPN)
Ensemble Net (ENN)
ensemble networks
GNNE Predictive Model
model retraining
model validation
objects
predictive model
Radial Basis Function Net (RBFN)
radial basis function networks
reference
Rho Net
rho networks
saving and loading network weights

NOL Studio objects

O
objects

See Also intelligent objects
Optegrity module, integration with

P
palettes, GNNE
PCA model API

general methods
Predictive Model

file format
GNNE
138
R
Radial Basis Function Net (RBFN)

block
file format

remote procedure calls (RPCs)
remote process management, GNNE feature
Rho Net

block
file format

S
sending

See posting
SymCure module

V
vector API
Vector Path Value

	Preface
	About this Guide
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Introduction to GNNE
	Introduction
	GNNE Features
	Data Processing
	Model Execution
	Neural Network Model Retraining
	Neural Network Model Validation
	File Operations
	Remote Process Management
	Online Interaction with NOL Studio

	Module Integration
	GNNE Objects
	Data Objects
	Data Controls
	Neural Network Objects
	NOL Studio Objects

	Accessing the GNNE API

	Integration of GNNE and NOL Studio
	Introduction
	Integrated Module Hierarchy
	Connecting NOL Studio and GNNE
	Launching NOL Studio from G2
	Connecting G2 from NOL Studio

	Accessing the Integration API
	Actions for Data Exchange and Parameter Passing

	Object Reference
	Introduction
	Data Objects
	Data Set
	Editing the Data Set
	Setting the Dimensions of the Data Set
	Entering and Viewing Data
	Saving and Loading Data
	Text Format for Data Sets
	Customizing the Text Format
	Loading the Data Set From NOL Studio
	Clearing the Data Set
	Making Values Permanent

	Data Path Value
	Vector Path Value
	Data Pair

	Data Controls
	Data Set Rescaler
	Making Values Permanent
	Configuring

	Vector Rescaler
	Making Values Permanent
	Configuring

	Novelty Filter
	Choosing Which Points to Keep
	Deciding Whether a Data Pair is Novel
	Making Values Permanent
	Configuring

	Data Pair Outlier Filter
	Configuring
	Making Values Permanent

	Neural Networks
	Saving and Loading Network Weights
	Loading Model Parameters from a Text File
	Import Model Parameters from NOL Studio
	Backpropagation and Autoassociative Network File Format
	Radial Basis Function and Rho Network File Format
	Ensemble Network File Format
	Predictive Model File Format
	Backpropagation and Autoassociative Networks
	Radial Basis Function and Rho Networks
	Ensemble Networks
	Predictive Model

	Backpropagation Net (BPN)
	Configuring
	Adjusting Weights
	Saving and Loading Weights
	Making Values Permanent

	Autoassociative Net
	Configuring
	Choosing the Run Mode
	Adjusting Weights
	Saving and Loading Weights
	Making Values Permanent

	Radial Basis Function Net (RBFN)
	Configuring
	Saving and Loading Weights
	Making Values Permanent

	Rho Net
	Configuring
	Saving and Loading Weights
	Making Values Permanent

	Ensemble Net (ENN)
	Adjusting Weights
	Saving and Loading Weights
	Making Values Permanent

	GNNE Predictive Model
	Adjusting Weights
	Saving and Loading Weights
	Making Values Permanent

	NOL Studio Objects
	Module Setting
	Predictive Model
	Optimization Mode
	Partial Least Square Model
	Saving and Loading Parameters
	Methods for PLS Model

	Principal Component Analysis Model
	Saving and Loading Parameters
	Loading PCA Data
	Importing Model Data from NOL Studio
	Displaying Statistical PCA Charts in G2
	Methods for PCA Model

	Application Programmer’s Interface
	Introduction
	GNNE Objects
	Data Sets
	Vectors and Matrices
	Neural Networks
	Network Training
	Statistical Models

	Interaction with NOL Studio
	Remote Process Management
	Data Management
	gnne-data-set
	NOL Studio Data Objects

	Neural Networks
	Predictive Model
	Optimization
	Backpropagation Net Model
	Radial Basis Function Net Model
	Autoassociative Net Model
	Rho Net Model
	Ensemble Network
	Partial Least Square Model
	Principal Component Analysis Model

	GNNE Predictive Model
	Model Import and Export
	Model Properties
	Model Execution
	Model Retraining

	Index
	A
	B
	C
	D
	E
	F
	G
	M
	N
	O
	P
	R
	S
	V

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF005b57fa4e8e201c005b9ad88d2891cf62535370005d201d005d00204f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Euroscale Coated v2)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

