
G2 Diagnostic Assistant

User’s Guide
Version 5.1 Rev. 0

G2 Diagnostic Assistant User’s Guide, Version 5.1 Rev. 0

November 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC114-510

Contents
Preface xiii

About this Guide xiii

Audience xiv

Conventions xiv

Related Documentation xvi

Customer Support Services xviii

Chapter 1 Basics of Using GDA 1

Introduction 2

Modes 2

Planning the Application 3
Using Modules 3
The Phases of an Application 4
Overview of Palettes and Blocks 5

Starting to Use GDA 5
Loading GDA the First Time 5
Renaming the Top-Level Module 7
Saving an Application 7
Starting GDA with Your Application 8

Using System Tables 9
Parameters GDA Does Not Check at Startup 9

Timing Parameters 9
Color Parameters 9
Font Parameters 9
Menu Parameters 10
Miscellaneous Parameters 10

Parameters GDA Checks at Startup 10
Timing Parameters 10
Drawing Parameters 11

Building a Diagram 11
Some Important Practices 11

Don’t Edit a Diagram While GDA Is Reset 11
Make Sure To Enable Data Input 11
iii

Save the Application Periodically 11
Creating Application Workspaces 12
Cloning Blocks 13

Cloning a Block From the Palette 14
Searching for a Particular Block 14
Cloning an Existing Block 15

Configuring Block Attributes 16
Configuring Attributes in the Configuration Dialog Box 16

Deleting Blocks 18
Connecting Blocks 18

Connecting to Peer Input Blocks 20
Deleting Paths and Stubs 21
Connecting One Output to Two Blocks 21
Rules for Connecting Blocks 22

Improving the Appearance of a Diagram 24
Aligning Blocks Using a Snap Grid 24
Creating Vertices in Path Connections 25
Labeling Diagrams 26
Editing Attribute Displays 27

Displaying a Block’s Table 28
Displaying the Value on a Path 28

Displaying the Path’s Table 29
Adding a Path Display 30

Running an Application 30
Running Your Own Procedure When You Start G2 31
Controlling the Flow of Data in an Application 32

Enabling and Disabling Data Input 32
Inhibiting Data Flow Through a Block 33

Enabling and Disabling Evaluation of a Block 33
Toggling Animation 34
Allowing Other Processing 35
Setting the Maximum Timeout for Data Seeking 35
Connecting to Remote Processes 35

Customizing Menus 36
Using Menu Preferences 36
Creating New Menu Preference Objects 38
How GDA Manages the Default Menu Preferences 39
Extending Main Menu Choices 39
Translating Menu Choices 40

Miscellaneous Features 40
Setting Configuration Panel Colors 40

Setting the Color for Titles, Type-in Boxes, Text, and Scroll
Messages 42

Setting the Color for Display Items Within Configuration Panels 42
Setting Network Colors 44
iv

Chapter 2 Using Blocks and Paths 47

Introduction 48

Basic Block Behavior 48
Reading Notes and Errors 48
Adding Comments to a Block 49
Resetting Blocks 50
Evaluating Blocks 51
Overriding Block Values 51

Overriding a Data Block 54
Overriding a Control Block 54
Overriding a Discrete Inference Block 54
Overriding a Fuzzy Inference Block 55

Locking and Unlocking Blocks 55
Enabling and Disabling Evaluation 56
Clearing Block Errors 57
Setting Block Colors 57
Setting Alarm Colors 59

Using Paths 60
Using Data Paths 61
Using Inference Paths 62

Filtering Data Passed to Inference Paths 62
Using Control Paths 63
Using Item Paths 63

Creating Item Paths 63
Placing an Item Onto an Item Path Interactively 63
Placing an Item Onto an Item Path Programmatically 64
Displaying the Item on the Path 65

Resetting Paths 65
Using Links 65
Using Connection Posts 66
Highlighting Paths and Connection Posts 68
Setting Path Colors 68

Using Path Attributes 70
The Quality Attribute 70
The Timestamp Attribute 71
The Collection-Time Attribute 71
The Expiration-Time Attribute 72

Specifying Validity Interval for a Variable 72
Determining How Blocks Use no-value Inputs 74
Determining Output Path Attributes for Peer Input Blocks 75

Determining Whether a Block Uses Expired Inputs 75
Example of Determining Path Attributes Using a Peer Input

Block 76

Creating Customized Path Connections 78
v

Creating a New Connection Subclass 78
Customizing the Connection Path Regions 81
Adding Custom Connections to a Custom Subclass 81

Specifying Initial Values 82
Specifying an Initial Data Value 82
Specifying an Initial Control Value 82
Specifying an Initial Status Value 83

Maintaining a History of Values 83
How the History Feature Works 84
Specifying the Size of the History 84

How GDA Handles Point-Based Histories 85
How GDA Handles Time-Based Histories 85
How GDA Handles Histories When the Sample Time is Fixed 86
Performance Issues 86
Deciding Which Sample Time Option to Choose 86

Specifying When to Propagate Data 87
How GDA Handles Point-Based Updates 87
How GDA Handles Time-Based Updates 88
Performance Issues 88

Specifying What Happens to History Upon Reset 89
Specifying What to Do With Partial History 90
How GDA Handles Nonmonotonic Values 91

Specifying How to Handle Multiple Values 91

Specifying and Generating Explanations 92
Specifying an Explanation 93

How to Describe Why a Block Passes True, False, or Unknown 93
Describing the Block’s Input Value 94

Generating Explanations 95
Generating Explanations for Most Blocks 97
Creating a Description for Logic Gates 98

Specifying Fuzzy Logic Attributes 100
Specifying the Type of Logic to Use 100
Specifying Uncertainty 101
Specifying Hysteresis 102

Using Variables and Parameters 104
Choosing the Type of Variable or Parameter 104
Creating a Variable or Parameter 105
Using Variables to Connect to External Data 105
Creating a Sensor 106
Connecting a Variable or Parameter to a Block 107
Overriding Values of Variables and Parameters 108
Coercing Data Using Variables and Parameters as Input 109

Examples of Data Coercion Using Variables and Parameters as
Input 111
vi

Coercing Data Using Variables and Parameters as Output 113
Examples of Data Coercion Using Variables and Parameters as

Output 115

Evaluating Expressions in Attributes 117
Using a G2 Expression 119
Using a G2 Function or Procedure 119
Examples 120

Using the GXL Spreadsheet to Edit Data 123

Understanding the GDA Block Evaluation Engine 125
Invoking an Individual Block 125
Executing Diagrams 126

Executing Blocks that Have Been Manually Evaluated 126
Executing Blocks that Have Been Launched by the System 126
Sweeping Diagrams with Entry Points 127
Setting the Sweep Interval 127

Evaluating Blocks on Individual Workspaces 128

Chapter 3 Using GDA Queues 131

Introduction 131

Summary of the Queue Features 132

Using the Alarm Queue 134
Filtering Queue Entries 134

Permanent and Temporary Filters 135
Creating a Permanent Filter 135
Entry Attributes Used with Filters 137
Creating a Temporary Filter 139
Making a Temporary Filter Permanent 144
Applying a Filter 145
Deleting a Filter 146

Sorting Entries 147
Sending Entries to Another Queue 147
Viewing the Details of an Entry 148

Displaying the Entry Message Text 150
Adding and Viewing Comments 150
Providing and Viewing Advice for Alarms 151
Viewing an Alarm Explanation 153
Viewing the Alarm History 153
Saving Details to a File 154

Showing the Source of an Entry 155
Acknowledging Alarms 156
Saving a Queue Entry 159
Removing Entries from the Queue View 160
Locking the Alarm Queue View 160
vii

Using the Error Queue 162

Using the Explanation Queue 163

Using the Message Queue 164

Sending Messages to Queues Using the Queue Message Block 165

Chapter 4 Custom Block Wizard 167

Introduction 167

Using the Custom Class Wizard 168

Creating a New Custom Subclass 169
Specifying the Class Name 171
Customizing the Icon 172
Customizing the Connection Stubs 173
Customizing the Attributes 175
Specifying the Palette and Module 177
Applying the New Class Definition 178
Cloning and Configuring the Custom Block 179

Customizing the Block Evaluator 180
Displaying the Block Evaluator 180
Types of Custom Block Evaluators 182
Editing the Block Evaluator Procedure 183
Example Using the power-block Custom Block 185
Declaring the Procedure Name and Arguments 185
Declaring Input and Output Path Local Names 186

Local Names for the General and Multiple Invocations Custom
Blocks 186

Local Names for the Peer Input Custom Blocks 187
Obtaining Input Path Values 187
Determining Output Path Attributes for Custom Blocks 188
Editing the Custom Portion of the Block Evaluator 189
Setting Output Path Values 189

Editing an Existing Custom Subclass 190

Deleting an Existing Custom Subclass 191

Custom Class Reference 193
General 194
Peer Input 195

Creating Connections for Custom Peer Input Blocks 195
Customizing the Peer Input Custom Block Evaluator 195

Configuring 196
Multiple Invocations 200

Determining How the Block Handles Multiple Control Signals 200
Single Source Encapsulation 206
viii

Creating a New Subclass of SSE Block 206
The Master Diagram and the Local Diagram 208
Editing the Master Diagram 210

Displaying the Master Diagram 210
Editing the Blocks on the Master Diagram 211
Using Rule Terminals on Single Source Encapsulation

Blocks 211
Saving the Master Diagram 212
Saving the Master Diagram 212
Cancelling Editing the Master Diagram 212
Saving the Master Diagram Locally 213
Creating Instances of a Single Source Encapsulation 213
Viewing the Local Diagram 213
Changing the Value of an Attribute 214

Configuring Attributes in the Master Diagram 215

Chapter 5 Creating and Configuring Queues 217

Introduction 217

Attributes of Queues You Can Modify 218

Creating a New Queue 219

Configuring a Queue 221
Configuring Attributes that Handle New Entries 223

Beep for New Entry 224
Default Priority 224
Display Messages 224
Entry Class 224
Item Addition Callback 224

Configuring Attributes that Handle Changes and Deletions to
Entries 225

Attribute Update Callback 225
Confirm Deletions 225
Item Removal Callback 226

Configuring Attributes that Handle Queue Capacity 226
Entry Lifetime 226
Entry Limit 227

Configuring Attributes that Are Specific to Alarm Queues 227
Alarm Log Formatter 228
Autogenerate Explanations 228
History Limit 228
Recurring Entry Class 228
Reuse Entry 229

Using Tracebacks for Alarms and Errors 229

Using a New Queue 229
ix

Logging Queue Entries 229
Enabling and Disabling Alarm Logging 230
Providing a Name and Location for the Log File 230
When GDA Creates a New Log File 231
Determining the Log File Header and Message Contents 231

The Log File Name 231
The Log File Header 231
Alarm Log Entries 232
Error Log Entries 233
Explanation Log Entries 233
Message Log Entries 233

Customizing the Entry 233
Incremental Logging of Alarm Entries 233
The Time Format for Alarm Entries 234

Chapter 6 Creating Queue Views 235

Introduction 235

Characteristics of the Built-in Queue Views 236

Creating a New Queue View Template 240

Configuring a Queue View Template 242
Configuring a Built-in Queue View 243
Configuring a New Queue View 243
Modifying Queue View Attributes on the Configure Dialog 244

Configuring the Lines per Row Attribute 244
Configuring the Font Size Attribute 245
Configuring Sorting Attributes 245

Configuring the Layout of a Queue View 245
Modifying the Queue View Label 246
Modifying Queue View Colors 247
Manipulating Toolbar Buttons 248

Deleting Toolbar Buttons 248
Moving Toolbar Buttons 248
Adding Toolbar Buttons 249
Modifying Button Attributes 251

Creating and Customizing Buttons 252
Queue View Button Classes 252
Detail View Button Classes 253

Modifying the Queue Entry Counters 253
Modifying Columns 254

Specifying the Columns that Appear in the View 255
Moving Columns in the View 255
Changing the Number of Rows Visible in the Queue View 255
Changing the Font Size of the Text Displayed in a Column 256
Changing the Column Color 256
x

Changing the Height and Width of Columns 256
Specifying Whether Clicking on a Column Header Sorts

Entries 256
Controlling the Type of Data Displayed in Columns 257
Controlling the Format of Floating Point Numbers in a Column 257
Determining Whether a User Can Edit Data in a Column 257
Controlling Whether a Column Cell Can Be Selected 258
Formatting the Contents of a Column 258
Configuring Date and Time Formatting 259
Configuring Ordination 261
Default Alarm Queue Color Formatter Procedures 263

Modifying Column Headers 264
Specifying the Attribute to Display in the Column 264
Modifying the Header Label Text 264
Modifying the Font Size of the Label 265
Modifying Colors of the Label 265
Monitoring a Column Value 265

Configuring the Detail View 266
Configuring the Detail View Template 266

Displaying the Default Detail View Templates 268
Configuring the Detail View Colors 269
Configuring the Detail View Size 270
Configuring the Detail View Label 270
Creating Your Own Detail View Template 270
Associating the Detail View with the View Details Button 271

Configuring the Detail View Position and Scale 271

Creating and Configuring the Access Manager 273
How the Access Manager Works 274
Specifying the Queue View Template or Access Manager 275
Creating an Access Manager 276
Configuring an Access Manager 277

The Access Manager Toolbar Buttons 278

Glossary 281

Index 289
xi

xii

Preface
Describes this manual and the conventions that it uses.

About this Guide xiii

Audience xiv

Conventions xiv

Related Documentation xvi

Customer Support Services xviii

About this Guide
G2 Diagnostic Assistant (GDA), is an environment for developing and running
intelligent operator applications. Its principal component is a graphical language
that lets you express complex diagnostic procedures as a diagram of blocks, also
called an Information Flow Diagram (IFD). These blocks are connected by paths
that show how data flows through the diagram.

This guide provides general information about how to use GDA. It assumes you
are familiar with G2. For information on the behavior of each specific GDA block,
see the GDA Reference Manual.

This user’s guide has these chapters:

This chapter... Describes...

Basics of Using GDA How to perform basic operations, such as using
the menus, setting up an application, creating a
diagram, and running an application.

Using Blocks
and Paths

Basic features of GDA blocks and paths.
xiii

Audience
This book is intended to be used primarily by programmers using GDA to
develop end-user applications. You should be familiar with G2.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Using GDA Queues How to use the queues, on which GDA displays
its alarms, messages, explanations, and error
messages.

Custom Block
Wizard

How to use the GDA wizard to create custom
subclasses of GDA blocks.

Creating and
Configuring Queues

How to create and configure GDA queues.

Creating Queue
Views

How to create queue views, which provide
access to queue entries.

This chapter... Describes...

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels
xiv

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xv

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer? Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User? Guide

• G2 Gateway Bridge Developer? Guide

G2 Utilities

• G2 ProTools User? Guide

• G2 Foundation Resources User? Guide

• G2 Menu System User? Guide

• G2 XL Spreadsheet User? Guide

• G2 Dynamic Displays User? Guide

• G2 Developer? Interface User? Guide

• G2 OnLine Documentation Developer? Guide

• G2 OnLine Documentation User? Guide

• G2 GUIDE User? Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System User? Guide

• Business Rules Management System User? Guide

• G2 Reporting Engine User? Guide

• G2 Web User? Guide

• G2 Event and Data Processing User? Guide
xvi

Related Documentation
• G2 Run-Time Library User? Guide

• G2 Event Manager User? Guide

• G2 Dialog Utility User? Guide

• G2 Data Source Manager User? Guide

• G2 Data Point Manager User? Guide

• G2 Engineering Unit Conversion User? Guide

• G2 Error Handling Foundation User? Guide

• G2 Relation Browser User? Guide

Bridges and External Systems

• G2 ActiveXLink User? Guide

• G2 CORBALink User? Guide

• G2 Database Bridge User? Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User? Guide

• G2 Java Socket Manager User? Guide

• G2 JMSLink User? Guide

• G2-OPC Client Bridge User? Guide

• G2 PI Bridge User? Guide

• G2-SNMP Bridge User? Guide

• G2 CORBALink User? Guide

• G2 WebLink User? Guide

G2 JavaLink

• G2 JavaLink User? Guide

• G2 DownloadInterfaces User? Guide

• G2 Bean Builder User? Guide
xvii

G2 Diagnostic Assistant

• GDA User? Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xviii

1

Basics of Using GDA
Describes how to perform the basic operations in GDA.

Introduction 2

Modes 2

Planning the Application 3

Starting to Use GDA 5

Using System Tables 9

Building a Diagram 11

Running an Application 30

Customizing Menus 36

Miscellaneous Features 40

Introduction
GDA, a layered product built on top of G2, is a visual programming environment
for developing applications that monitor and control real-time processes.

A GDA application contains schematic diagrams that:

• Acquire data from real-time processes

• Make inferences based on the data

• Take actions based on the inference values, such as raising alarms, sending
messages to operators, or concluding new setpoints
1

You create a GDA diagram by cloning blocks from palettes and by connecting
them together. You can then configure the attributes of the blocks to control their
behavior.

Once you have created diagrams of your process, you run them to observe their
behavior and test your application.

Modes
GDA provides three operational modes: Administrator mode, Developer mode,
and User mode. While developing your application, you use both Developer
mode and Administrator mode. The end user runs the application in User mode
or in a mode you create.

Note You can change modes by selecting Mode from the Gensym menu and choosing a
mode. You can also change between Developer mode and Administrator mode by
entering Ctrl-Y.

• Developer mode enables you to create and define objects and other elements
of the application. You can also run the application in this mode, clicking on
buttons to open workspaces or run procedures associated with the buttons.

• Administrator mode provides more complete access to all objects in the
diagram, giving you options not available in Developer mode. Generally, you
use these options infrequently, although they are important in being able to
fully describe your application. For example, in Developer mode, if you click
on the label of a subworkspace button, GDA opens the subworkspace. In
Administrator mode, clicking on the button enables you to edit its label.

• User mode provides restricted access to menus, limiting the user’s ability to
change the diagram. This mode enables the user to acknowledge alarms and
lock and override block values.

You can define user modes for your application. See the “Configurations” chapter
in the G2 Reference Manual, for more information on configuring user modes.

Planning the Application
It is very important that you carefully plan the application, which involves:

• Studying your process and identifying its components

• Categorizing the components to create object classes

• Describing the behavior of each component so you can identify attributes and
develop methods for each object class

• Listing the rules that govern the behavior of your system
2

Planning the Application
• Identifying the components whose behavior is critical for the smooth
functioning of your process and describing the conditions that should cause
alarms

• Creating modules

Using Modules

All but the simplest KBs should consist of multiple modules. Developing an
application using multiple, small modules offers many advantages, including:

• It enables developers to divide and merge work.

• It results in potentially reusable modules.

GDA itself is modularized, consisting of a number of modules.

When you develop your application, you begin in the top-level module, called
gdaapps. When you save an application, you save it to another file name.

Other advantages, as well as a more complete discussion of using modules, are
contained in the G2 Developer? Guide, an essential manual for the GDA developer
interested in using modules.

For more information about creating, populating, and saving a module, see the
chapter on “Modules and Modularized KBs” in the G2 Reference Manual.

The Phases of an Application

A GDA diagram consists of blocks, which process data, and paths, which pass
different types of data through the diagram for monitoring and analysis. A typical
GDA diagram does the following:

• Acquires data, filters the data, and performs operations on the data, such as
arithmetic or SPC operations. This part of the diagram uses data blocks and
data paths.

• Makes inferences about the data and performs logic operations on the
inference values. This part of the diagram uses inference blocks and inference
paths.

• Performs actions based on the inference values. This part of the diagram uses
action blocks and control paths.

In addition, a GDA diagram can perform a number of special purpose functions,
such as creating alarms when certain conditions are met, charting your data,
incorporating G2 rules into your diagram, and networking your application.
3

The following figure outlines the general features of each segment of the diagram:

Overview of Palettes and Blocks

The GDA palettes, accessible from the Palettes menu, are divided into three
categories, which correspond to the three basic parts of the diagram:

• Data blocks, which operate on numeric, textual, or symbolic values

• Inference blocks, which derive truth values from data values, or which
operate on truth values (including fuzzy values)

• Action blocks, which perform actions on other blocks or on the environment

Each palette is described in detail in its own chapter in the GDA Reference Manual.
The common features of all the blocks on a palette are described at the beginning
of the chapter, and the blocks are described within each chapter.

Starting to Use GDA
To start developing a GDA application, first, you start G2, then you load
gdaapps.kb. This top-level KB requires a number of G2 utility KBs, which are
located in the g2\kbs\utils directory on Windows and in the g2/kbs/utils
directory on UNIX in your G2 installation directory.

To run GDA, you must use a module search path to point to the required utility
KBs. One way to specify the module search path is by using the -module-search-
path command-line option to start G2. When you start G2 from the shortcut on
the Start menu on Windows platforms, the -module-search-path argument

Data Acquisition Data Inferencing Actions

1. Getting data into GDA
using:

• Sensor input

• Simulated values

• Variables

• Rules

2. Pre-processing data
using filters

3. Obtaining statistical
information

1. Monitoring data using:

• Data observations

• Temporal observations

2. Analyzing data using:

• Combinational logic

• Temporal logic

1. Informing the operator of
unexpected behavior
using:

• Alarms

• Messages

2. Controlling attributes of
objects using:

• Block actions

• Rules

• Procedures

Blocks: Data Blocks

Paths: Data Paths

Blocks: Action Blocks

Paths: Control Paths

Blocks: Inference Blocks

Paths: Inference Paths
4

Starting to Use GDA
appears in the shortcut, which you can modify, as needed. You can also configure
the module-search-path attribute in the Server Parameters system table to make
the module search path a permanent part of your application.

For details on specifying the module search path, see the G2 Reference Manual.

Loading GDA the First Time

To load GDA the first time:

1 Start G2, using the -module-search-path command-line option, specified as
a string to find components required by NOL application.

The required and optional components for NOL application are:

• G2 utility

• NOL modules

• GDA basic modules

• G2i modules

• Optional G2 bridges, such as G2 OPCLink, G2 JavaLink, and G2-PI bridge.

For example, from a command window or shell:

For example, from a command window:

g2 -module-search-path "'.\' '..\nol'
'..\g2\kbs\utils' '..\gda' '..\g2i\kbs'
'..\opclink\kbs' '..\pi' '..\jmail\kbs'
'..\jms\kbs' '..\' '..\javalink\KBs'
'..\protools\kbs' '..\activexlink' '..\gsi'
'..\gw\kbs' '..\tw2\kbs' '..\odbc'""

Windows g2 -module-search-path "'.\' '..\nol'
'..\g2\kbs\utils' '..\gda' '..\g2i\kbs'
'..\opclink\kbs' '..\pi' '..\jmail\kbs'
'..\jms\kbs' '..\' '..\javalink\KBs'
'..\protools\kbs' '..\activexlink' '..\gsi'
'..\gw\kbs' '..\tw2\kbs' '..\odbc'""

UNIX g2 -module-search-path "'./' '..\nol'
'../g2/kbs/utils' '../gda' '../g2i/kbs'
'../opclink/kbs' '../pi' '../jmail/kbs'
'../jms/kbs' '../' '../javalink/KBs'
'../protools/kbs' '../activexlink'
'../gsi' '../gw/kbs' '../tw2/kbs'
'../odbc'"
5

Note You must surround the module search path name with double quotes. If the
directory contains spaces, you must surround the path name with single
quotes as well.

2 Select Main Menu > Load KB.

3 Enter the complete pathname of the gdaapps KB, including double quotes.

Tip If you do not know the pathname of the file you want to load, enter the name
of a directory and press Return to display a list of the contents of the directory.
Select a subdirectory or filename from the list that appears and press Return
again until you have located the desired file.

For example, the pathname might look something like this on Windows:

"C:\Program Files\Gensym\g2-8.3r0\gda\gdaapps.kb"

G2 reports its progress and displays a message in the Operator Logbook when
each module is finished loading.

4 Select Main Menu > Start.

When you start GDA, the top-level menu bar appears:

If you do not see the GDA top-level menu and you issued the Start command, you
may be running GDA with other Gensym products. Select the Gensym menu and
choose Available Menus > GDA. The GDA menu should appear.

Renaming the Top-Level Module

When you initially load GDA, you load the knowledge base contained in the file
gdaapps.kb. This creates an empty top-level module named gdaapps, which
loads all the required GDA modules.

Typically, you rename the top-level module for a specific application. When you
rename the top-level module, you must also reassign any top-level workspaces to
the new module.

To rename the top-level module and reassign its top-level workspaces:

1 Load the empty KB contained in the file gdaapps.kb located in the GDA
directory, as described in Loading GDA the First Time.

2 Load the empty KB contained in file gdaapps.kb located in the GDA
directory.
6

Starting to Use GDA
3 Select Main Menu > Inspect to display the G2 editor.

4 Enter show on a workspace the module hierarchy in the editor.

This shows a workspace containing the module hierarchy for the GDA
application. The top-level module is called gdaapps.

5 Click on the top-level module and edit its name.

6 Enter a new name for the top-level module that describes your application.

7 Select Main Menu > Inspect again and enter show on a workspace every
kb-workspace assigned to module gdaapps.

You will see an object representation labeled a kb-workspace.

8 Choose table on the object that represents a kb-workspace and edit the
Module-assignment attribute to refer to the new top-level module name.

You load this new top-level KB the next time you want to use your application.

Saving an Application

To save an application, you save the top-level module to a .kb file. The default
file name for an application matches the name of the top-level module. We
recommend that you always save your application to a file name that matches the
top-level module. The required, lower-level modules exist as separate KBs. You
never need to save GDA and its supporting modules.

Before you can save your application, you must ensure that all top-level
workspaces are assigned to the new top-level module; otherwise, you cannot save
your application as a modularized KB.

If you save an application to a file that does not have the same as the top-level
module, you can create a module map to associate a module name with a
particular KB file. For more information about modules and modularized KBs, see
the G2 Reference Manual.

Saving the top-level module automatically saves your configuration as well; all
customizations to the colors, settings, and queues are automatically saved in the
KB file. See Customizing Menus.

To save the top-level module:

1 Select Main Menu > Save KB.

G2 prompts you to save the top-level module, using the name you specified.
The default file name has the same name as the top-level module.

2 Click End or press Return.

G2 reports progress while saving and displays a message in the Operator
Logbook when the save is complete.
7

Starting GDA with Your Application

Once you have configured the module search path, renamed the top-level
module, and saved your application, you can start GDA with your application.
You can either load the application manually or you can use a command-line
option to load the KB when G2 starts up.

To start GDA with your application:

1 Start G2.

2 Select Main Menu > Load KB and specify your top-level module KB.

To load your application automatically:

 Start G2, using the -kb command-line option, specified as a string.

For example, from a command window or shell:

Tip You may need to include the module search path as one of the command-line
options as described above.

Using System Tables
Certain system table parameters enable GDA to run more efficiently, improve the
appearance and convenience of running GDA applications, or run without
encountering a particular error.

These parameters are set in gdaapps. If an application is not developed using
gdaapps, or if you have changed parameter values, these parameters may not be
set properly. GDA checks for some of the parameter values at startup. For these
parameters, if the values differ from the expected values, GDA displays a
message that advises that the value be changed.

Parameters GDA Does Not Check at Startup

GDA does not check the value of these parameters at startup. The description of
each parameter indicates what happens if the value is different than that set in
gdaapps.

Windows g2 -kb "c:\Program Files\Gensym\
g2-8.3r0\gda\myapp.kb"

UNIX g2 -kb "/usr/gensym/g2-8.3r0\gda/myapp.kb"
8

Using System Tables
Timing Parameters

The Uninterrupted-procedure-execution-limit parameter sets a limit on the amount
of consecutive execution time a procedure can use. Particularly during startup
and initialization, some GDA processes may run longer than the G2 limit. This
parameter is set to 1 minute to avoid procedure aborts due to exceeding the limit
value. You can increase this parameter further if, for large applications, the
timeouts continue to occur.

Color Parameters

The Color-on-1st-level-color-menu parameter specifies which colors appear on the
first level menu. A setting of all puts all the colors on the color palette. Also, a
setting of 3 for the Number-of-columns-on-1st-level-color-menu provides an easy
to use palette display.

Font Parameters

The Font-for-attribute-tables parameter determines which font G2 uses for text in
attribute tables. A value of small corresponds to the setting that GDA was
designed around. Making the attribute table text larger may have unintended
layout effects.

Menu Parameters

The When-to-allow-multiple-menus parameter determines whether you can
display on a workspace more than one menu, or more than one copy of the same
menu at a time. In gdaapps, a value of for different selections is used, which
displays more than one menu at a time if the menus are for different items.

Miscellaneous Parameters

The Initial-margin-for-workspaces parameter specifies how close to the edge of a
workspace you can place objects. Developing in GDA often results in the creation
of large workspaces. A setting of 10 (the default is 30) narrows the margins on
workspaces and reduces the amount of the screen used.

The Backward-compatibility-features parameter allows you to revert certain
changes made in G2 since previous versions. The Ignore-duplicate-list-element-
error value causes G2 to disregard a change made to the insert action, which
signals an error when inserting a duplicate element into a list that disallows
duplicates. If the parameter value does not include Ignore-duplicate-list-element-
error, GDA will display errors and could prevent GDA from working properly
under certain circumstances (for example, alarms might not reset).

The Connection-caching-enabled? parameter enables expressions that reference
connections to execute faster, but slows down the process of changing
connections. A value of yes enables connection caching and improves GDA’s
execution.
9

Parameters GDA Checks at Startup

GDA checks the values of these parameters when starting up an application. If the
value is different than the value set by gdaapps, GDA displays a message that
suggests that you change the value. The description of each parameter discusses
the reason for the parameter value.

Timing Parameters

The Scheduling-mode parameter defines the timing mode of the scheduler and
how tasks are scheduled. If the scheduler mode is simulated time at startup, GDA
will prompt you to change the value. If you choose to change the value, GDA sets
it to real time.

The Minimum-scheduling-interval parameter specifies the length of time for a
clock tick, which determines how long the scheduler has to perform tasks
between clock ticks. The value is set to 0.05, a setting that is necessary for GDA’s
own timing parameters to work properly.

The Milliseconds-to-sleep-when-idle parameter only affects VMS platforms. It
controls the response of VMS to graphical events. A value of 10 generally works
well.

Drawing Parameters

The Allow-scheduled-drawing? parameter specifies whether drawing is a
scheduled task. The value yes (the G2 default) selects scheduled drawing, which
is more efficient than immediate mode.

The Paint-mode? parameter specifies whether the Paint or the XOR drawing
mode is in effect. A value of yes specifies paint mode. This ensures that the
layered graphics in GDA appear as intended.

Building a Diagram
This section discusses important concepts and tasks you use when building a
diagram.

Some Important Practices

As you build a GDA diagram, you should be aware of these important practices:

• Don’t edit a diagram while GDA is reset.

• Make sure to enable data input.

• Save the application periodically to protect your work.
10

Building a Diagram
Don’t Edit a Diagram While GDA Is Reset

Do not attempt to edit a diagram after you use the Main Menu > Reset menu
choice; if you do, the results will be unpredictable. Before adding, deleting, or
modifying blocks on a workspace when GDA is reset, you must start G2 using
Main Menu > Start.

Make Sure To Enable Data Input

When you run a GDA application, data input is disabled, preventing data from
entering the application through entry points, or being generated by Signal
Generator or Clock blocks. To ensure that data flows into the application, make
sure you select Controls > Enable Data Input.

Save the Application Periodically

To protect your work, save the application periodically. As with any
programming or application development software, you should acquire the habit
of saving your work regularly to protect it against hardware or software
problems.

Also, you should save your work before making potentially damaging changes so
you can return to that version of your application. G2 does not provide the
capability of undoing deletions or changes automatically so you should be careful
when deleting objects that might require a substantial amount of effort to re-
create. GDA does display a confirmation dialog box when you delete an object,
which provides you the opportunity to cancel the deletion.

This manual discusses saving the application later in this chapter. See Saving an
Application.

Creating Application Workspaces

Most applications have numerous workspaces, organized in a hierarchy.
Typically, an application consists of a single top-level workspace, which contains
navigation buttons that provide access to subworkspaces. These subworkspaces
contain the diagrams and supporting definitions and programmatic elements that
together make up the application.
11

To set up the workspace hierarchy:

1 Create a new workspace by selecting Main Menu > New Workspace.

2 Click on the new workspace and select Setup Application Workspace to
convert the workspace to an application workspace. GDA displays this
workspace:

3 Click on the text labeled Enter title here, select the edit menu choice, enter a
new title, and press Return.

4 Create a top-level menu choice to provide access to this workspace by clicking
on the title and choosing add to menu. GDA adds a menu choice to the
Applications menu; the name of the menu choice is the same as the title you
added in the previous step.

5 Click on the background of the workspace and select Add Subworkspace
Button to add subworkspaces for your application. Repeat this step to add
additional subworkspaces.

6 Go into Administrator mode.

7 Click on the text of each subworkspace button, and select edit to edit the name
of the subworkspace.

8 When you have created labels for all your subworkspaces, return to
Developer mode.

9 Click on a subworkspace button to display its subworkspace.

10 Edit the title of the subworkspace to match the subworkspace button (if you
want the subworkspace to have a label that matches the text of the button).
12

Building a Diagram
For example, here is the top-level workspace for a Pump Diagnostics application
and the Data Pre-Processing subworkspace, which is initially empty:

Note If you delete a top-level workspace whose menu choice has been added to the
Applications menu, GDA automatically removes the associated menu choice.

Cloning Blocks

You add a block to the workspace by cloning it:

• If you know the palette on which the block resides, you can clone it from the
palette.

• If you do not know the palette on which the block resides, you can search for
the block.

• You can clone a block already on the workspace.

Top-level workspace
organizes the application
into subworkspaces

Navigation buttons
provide access to
subworkspaces

The subworkspace is
where you create
diagrams and user
interface
13

Cloning a Block From the Palette

If you know the palette that contains the block you want to clone, you can clone
the block directly from the palette.

To clone a block from the palette:

1 Select Palettes from the top-level menu, then Data, Inference, Action, or Other
to see submenus of available palettes.

2 Choose the palette.

3 Click on a block on the palette to attach it to the mouse pointer.

4 Move the block to the desired location on the workspace and click the mouse
again to place the block on the workspace.

Searching for a Particular Block

If you do not know the palette that contains the block, use the Find Block feature
to locate the block by name. You can enter the complete block name, or you can
enter part of its name to see a list of all blocks that contain the partial name.

To find a particular block:

1 Press the F2 key or select Help > Find Block to display the Find Block dialog:

2 Enter the name of the block, or part of the name, in the Search for field, then
press Return.

For example, suppose you want a block that operates on a range of values but
you do not know the full name of the block. You could enter range in the
Search for field to get a list of all blocks having range in their names.
14

Building a Diagram
3 Scroll through the list of blocks until you find the one you want, then select it.
GDA displays the block in the area to the right of the list. For example, to be
able to clone the Belief Range block from this list, select the block name:

4 Click on the block to attach it to the mouse pointer.

5 Position the block on your workspace and click the mouse again to place it.

You can change the key that GDA uses to invoke the Find Block feature. The key
you choose must not be an alphanumeric key.

To configure the function key for the Find Block menu choice:

1 Select the Preferences > Settings > Environment menu choice to display the
Environment Settings dialog.

2 Set Browser Key Binding to any allowable key binding, then press OK. The
new key binding is effective when you restart G2.

Cloning an Existing Block

Another way to create a block for use in a diagram is to clone an existing block
already on a workspace.

To clone an existing block:

 Click on a block on a workspace, choose the clone menu choice, and click to
place the block on the workspace.

Note G2 must be running for you to be able to clone an existing block.

The cloned block has the same number of input and output paths, and the same
configuration settings as the original block. However, any attribute values of the
15

original block that were determined since GDA began running (that are not set on
the block’s configuration dialog box) are not cloned.

Configuring Block Attributes

Most blocks have attributes that you can configure to specify the behavior of the
block. All attributes have default values that enable them to evaluate without
being configured. However, you may want to configure your blocks while
creating a diagram.

You can configure the attributes of blocks in these ways:

• Editing the attributes of blocks in the configuration dialog box

• Editing attribute displays of blocks

• Editing attributes using the block’s API

Note When overriding a block’s value, you cannot simultaneously configure the block.

Configuring Attributes in the Configuration Dialog Box

You use configure a block’s attributes using the block’s configuration dialog box.

To configure the attributes of a block using its configuration dialog box:

1 Select configure from the block’s menu.

If a block does not have any configurable attributes, configure does not appear
as a menu choice for the block.

2 Modify the attribute values on the configuration dialog box.

Note You can specify a block’s name and the Dp-out attribute of entry points on the
block’s table. Otherwise, you cannot use a block’s table for entering attribute
values into the block, even in Administrator mode.
16

Building a Diagram
The following figure shows the types of user interface controls you can use to
modify attribute values on the Inference Output block’s configuration dialog box:

To enter a value in an edit field:

1 Place the mouse pointer in the field. The background color of the edit box
changes, indicating it is active.

2 Delete or edit the current value.

3 Enter a new value.

4 Press the Return key. The background color of the edit field changes to its
original color.

If the value you entered is not of the correct type, GDA displays an error message
when you press the Return key. GDA also validates dependencies between block
attributes when you enter values. For example, for blocks that specify upper and
lower thresholds, GDA verifies that the upper threshold is greater than the lower
threshold.

When you enter text strings in a configuration dialog box, you do not need to
enter quote marks. You only need to enter quote marks in a configuration dialog
box when entering an expression, as described in Evaluating Expressions in
Attributes.

To select a new value using a radio button:

 Click on the desired button. Only one radio button can be selected at a time.

To display a child dialog box:

 Click on the button within the configuration dialog box.

Edit field

Radio buttons

Button that displays
a child dialog box
17

To accept or reset the values on the dialog box:

 Click on the OK, Apply, or Cancel button at the bottom of the dialog box. The
table below describes the actions taken by each of these buttons.

Deleting Blocks

Sometimes you need to delete a block from a diagram.

To delete a block:

1 Select delete from a block’s menu.

A confirmation message is displayed.

2 Click OK to confirm deletion of the block.

Connecting Blocks

A stub is a short connection located on the outside of a block that has not yet been
connected to another block. The blocks on the palettes contain varying numbers
and types of input and output stubs, depending on the block.

For example, a Numeric Entry Point has only an output stub because it is the
starting point for data entering into a diagram. A First Order Exponential Filter
has an input stub and an output stub because it takes an input value and passes
an output value:

GDA blocks name all their connection stubs. A named connection stub is called a
port. An input port carries data to a block; an output port carries data from a
block. If you add a connection stub to a block interactively, the stub is not named.

This button... Performs this action...

OK Applies the entered values and closes
the configuration dialog box

Apply Applies the entered values and leaves
the configuration dialog box open

Cancel Discards the entered values and closes
the configuration dialog box

output stub input stub output stub
18

Building a Diagram
Some blocks have multiple input paths, where the order and meaning of the input
stubs is significant. For example, a Difference block subtracts the value on the
bottom input data path from the value on the top input data path:

To connect two blocks together:

1 Click on the output stub of the upstream block.

Note Data flows from the output stub of an upstream block to the input stub of a
downstream block.

2 Move the mouse pointer to the input stub of the downstream block. It is not
necessary to hold down the mouse button while you move the mouse. Similar
to the way a block is attached to the mouse pointer when you clone it from a
palette, clicking on the output stub of the upstream block attaches the path to
the mouse pointer.

3 Click on the input stub of the downstream block. The blocks are now
connected. You could also connect these blocks in reverse order, connecting
the input stub of the downstream block to the output stub of the upstream
block.

Once you have connected two blocks together, the connection between the blocks
is called a path. If the path is long enough, it has an arrow to indicate the direction
of flow of the data.

To see the direction of flow of any stub:

 Drag the stub out from the block or move the blocks further apart:
19

Connecting to Peer Input Blocks

Some blocks have a fixed number of input stubs, where the order of the inputs is
important. For example, the Difference block, shown in the previous section,
requires that inputs be in a particular order. Blocks that require that the inputs be
arranged in a specific order are called non-peer input blocks.

Other blocks can have any number of input paths, where the order of the inputs is
unimportant. For example, the Summation block adds any number of inputs; the
order of the inputs does not affect the result. Blocks that can have any number of
inputs and do not require that the inputs be arranged in a specific order are called
peer input blocks because their inputs are treated alike, or as “peers.”

When connecting to a peer input block, you can connect to an existing input stub
of the block and you can connect to the block itself to create a new stub.

This figure shows Summation blocks that are connected to two, three, and four
Entry Points. Notice in the first example, one input stub is not connected. In the
last example, the bottom Entry Point is connected directly to the block, creating a
new stub:

To connect to a peer input block:

 Click on the output stub of the upstream block, move the mouse to an input
stub of the downstream block, and click to make the connection.

You can connect as many input paths into the block as are required for the block’s
operation. You can also delete existing input stubs as required to improve the
appearance of the block.

You can increase the size of a peer input block to accommodate many inputs. For
more information, consult the G2 Reference Manual.

Note Peer input blocks ignore input ports that are not connected to other blocks. For
more information, see Determining How Blocks Use no-value Inputs.
20

Building a Diagram
Deleting Paths and Stubs

Sometimes you need to delete the path between two blocks to connect to other
blocks.

To delete the path between two blocks:

 Click on the path between the two blocks to display the path menu, then
choose delete. The path is deleted, leaving a stub.

To delete an unused input stub on a peer input block:

 Drag the stub into the block, then release the mouse button. The stub
disappears.

You cannot delete the built-in stubs on a non-peer input block. If you drag an
unused stub into this kind of block, GDA displays a message indicating that you
are deleting a required stub.

Note You cannot delete the output stub of any block. All output stubs are named ports.
The block evaluator uses the port name when executing.

Note When you delete the input stubs of peer input blocks, you must leave at least one
input stub on the block. If you attempt to delete the last stub, GDA displays an
error message and enables you to restore the stub.

Connecting One Output to Two Blocks

Sometimes an upstream block provides input to more than one downstream
block. GDA displays the junction using a junction block.

For example, you might want the data coming in through a single entry point to
be processed by several different observation blocks.

To use one block as input to several blocks:

1 Connect the data source block to one of the other blocks.
21

2 Place the mouse pointer on the input stub of the unconnected block. Press and
hold down the mouse button.

3 Move the mouse pointer so it is over the path between the two blocks that are
already connected.

4 Release the mouse button. GDA draws a junction block at the junction.

Rules for Connecting Blocks

GDA enforces these rules for connecting blocks:

• An output stub of one block must be connected to an input stub of another
block. For example, in this figure an attempt is made to connect the output
stub of the Summation block to the output stub of the Changeband Filter
block. GDA generates this error message to the Operator Logbook: “can’t join
directed connections with opposing directions!”

illegal connection
22

Building a Diagram
• The stubs must be the same type. For example, you can only connect a data
path to another data path, or an inference path to another inference path. In
this figure, an attempt is made to connect stubs of different types. GDA
generates this error message to the Operator Logbook: “can’t join connections
with incompatible cross sections.!”

• You cannot drag a stub into a non-peer input block. If you try to connect a
stub to a non-peer input block directly, GDA displays a message indicating
that the connection is illegal.

• You must always connect to an existing output stub. For example, you
cannot delete an existing output stub on a block and then drag a stub into the
block to create the output. GDA displays a message indicating that the
connection is illegal.

• You cannot create junctions into an input path. You cannot create a junction
by connecting the input path from one block into the input path of another.
However, you can create this kind of connection by using one of the
Connector blocks.

illegal connection

illegal connection

illegal junction

illegal junction
23

Improving the Appearance of a Diagram

GDA provides several ways for you to improve the appearance of a diagram:

• Using a snap grid to align objects

• Creating vertices to control the paths between blocks

• Adding annotations

Aligning Blocks Using a Snap Grid

A snap grid is an invisible grid on a workspace. When the grid is “on,” blocks
placed on the workspace “snap” to the closest intersection of vertical and
horizontal grid lines.

You can specify these grid settings:

• Whether the snap grid is turned on or off. By default, the snap grid is off.

• The space between grid lines, in pixels. By default, the space between grid
lines is 30 pixels.

• The workspaces that the grid controls.

If you turn the grid on for a workspace, that workspace and all subworkspaces
below it in the workspace hierarchy use the same grid setting. By default, the
snap grid is off.

Note The snap grid feature does not work if you are in Administrator mode.

To use a snap grid for a workspace:

 In Developer mode, select the KB Workspace > Toggle Snap Grid menu choice
on the workspace. This menu choice only appears when the workspace
contains GDA blocks.

Note The snap grid feature does not work with Telewindows2.

To set the resolution of the snap grid:

1 Choose Preferences > Settings > Environment from the top-level menu.

2 On the Environment Settings dialog, set the Snap Grid Resolution and click
OK.

3 If the grid is turned on, you need to turn it off, then on again before the new
setting is applied. If the grid is turned off, turn it on.
24

Building a Diagram
Note A snap grid aligns blocks accessible on most GDA palettes. It does not align
paths, workspace buttons, messages, connection posts, or alarm readouts.

Note The snap grid exposes a G2 feature using a GDA menu choice. GDA sets the Item-
Configuration attribute on the workspace by specifying the constrain moving ...
such that the item aligns on a grid clause. For more information, see the
G2 Reference Manual.

Creating Vertices in Path Connections

Sometimes, a diagram requires a connection other than a straight line. One way to
accomplish this is to drag a connected block to a new location to create a vertex
automatically in the existing path connection:

Sometimes, the automatically created vertex is not exactly in the desired location,
and sometimes you need more than one vertex. You can create custom vertices
when you create the path between two blocks.

To create path vertices when you create the path:

1 Click on the output stub of the upstream block and hold down the mouse
button.

2 Drag the mouse pointer to the location of the first vertex. While still holding
down the mouse button, drag the pointer at a right angle to the path to create
the first vertex.

3 Move the mouse pointer to the location of the second vertex and release the
mouse button. Keep the mouse pointer in this location.

4 Click and release the mouse button to create another vertex, then move the
mouse until you reach the next vertex. Each time you click the mouse button,
GDA creates another vertex. When you click on the input stub of a block,
GDA connects the stubs.
25

Labeling Diagrams

When you create a schematic diagram, it is very useful to label different portions
of the diagram to make it easier to understand. There are numerous techniques
for labeling your diagrams, including:

• Using free text labels

• Naming objects

• Displaying attribute values

You can also comment your blocks, as described in Adding Comments to a Block.

To label a diagram using free text:

1 Click on the background of a workspace, and select New Free Text.

2 Another menu appears, offering you a choice of free text objects. Select free-
text to insert text with a border, or select borderless-free-text to insert text
without a border.

3 Enter the text for the free text object using the G2 editor. You can include any
character, including spaces. You do not need to enter quotation marks.

4 Press Return to attach the text to the mouse pointer, and click the mouse
button to place the free text object on the workspace.

Note If you use free-text objects to add labels to your diagrams, consider creating a
subclass of free-text and create instances of that class instead. Doing this enables
you to control the appearance of all such labels in your diagram by defining
attributes on the new class without affecting existing free text objects.

To label an object by assigning a name:

1 Click on the object to display its menu.

2 Select name to display the G2 editor.

3 Enter the name of the object and press Return.

Note G2 names cannot contain spaces; by convention, G2 names having more than one
word contain hyphens in place of spaces.

The name appears in upper case below the object. If the object is a block that
has a stub below the block, the name appears on a side of the block that has no
stub.

4 To move the name, drag the text to a new location.

5 To change the name, click on the text, select edit, and enter a new name.
26

Building a Diagram
To hide the name:

 Click the name to display its menu, and select hide name. To redisplay the
name, click on the object and select name, then press Return.

To change the default fonts used for text:

1 Click on the background of the G2 window to display the Main Menu.

2 Select System Tables > Fonts to display the fonts menu, as shown.

3 Edit the font size of any of these attributes.

The options are: small, large, and extra-large.

For more information about these settings, see the G2 Reference Manual.

Editing Attribute Displays

Some blocks display attribute values near the icon, and enable you to edit the
value directly. For example, this figure shows a High Value observation block
displaying the Threshold attribute near the icon, and the portion of the
configuration dialog box on which the attribute is specified:
27

To configure the attribute of a block by editing its attribute display:

 Click on the attribute display next to the block, enter a new value in the type-
in area that appears, then press Return.

Displaying a Block’s Table

Each block uses a table to display status information about the block and enables
you to enter comments to describe the block. Blocks that enable you to display
attribute values also list those attributes on their tables. Some blocks display more
attributes in their tables.

Note Some block tables display more attributes in Administrator mode than in
Developer mode.

Some blocks define an attribute that contains a variable that keeps a history of the
value of the block’s output path. For example, all entry points contain attributes
for this purpose: dp-out, ip-out, or cp-out and sensor-value. Signal generators
contain an attribute named output-value that stores the current sensor value. For
more information about using these attributes, see the discussion of entry points
in the GDA Reference Manual.

To display the table for a block:

 Select table from the block’s menu.

For example, the table for the Numeric Entry Point looks like this:

The Notes and Error attributes provide information about the error status of the
block. The Comments attribute contains user-defined notes about the block. For
more information about using these attributes, see Basic Block Behavior.

Displaying the Value on a Path

Every path has a value that is propagated downstream if data input is enabled.
The value stored on the path depends on the path type:
28

Building a Diagram
Controls paths do not store any data values.

You determine the value on a path in one of two ways:

• Displaying the path’s table

• Adding a path display to the diagram

Displaying the Path’s Table

You display a path’s table when you only need to see the path value temporarily.
The path’s table disappears when GDA is reset.

To display a path’s table:

 Click on the path, and select table.

This figure shows the table for output path of the Summation block, which sums
the output data values generated by the Sine Wave and White Noise blocks:

.

Note You cannot enter data into this table; the attributes are read-only.

Paths of type... Store...

Data Data-value, which is a number, symbol, or text
string

Inference Status-value, which is .true, .false, or unknown

Belief-value, which is a floating point number
between 0.0 and 1.0, where 0.0 is .false, 0.5 is
unknown, and 1.0 is .true (these values can be
configured)

table

Output data
value
29

The path’s table contains other information about the path as well:

For more information about these path attributes, see Using Path Attributes.

Adding a Path Display

A Path Display is a block that shows its input value. You add a Path Display block
to a diagram when you want the display to persist through restarts and reloads.

To add a path display to a diagram:

1 Clone a path display of the appropriate type from the Path Displays palette,
and place it to the right of the block whose path value you want to display.

2 Connect the upstream block’s output data path to the Path Display.

The current value is displayed in the path display:

You can also use the Alarm Readout block to display the value on a path. For
more information, see the GDA Reference Manual.

Running an Application
Once you have created a schematic diagram, you run the diagram to monitor the
data and cause the diagram to take whatever actions are necessary. To run a
diagram, you must do the following:

• Load the application (if it is not already loaded)

• Start G2 (if it is not already running)

• Enable data input

This path attribute... Indicates...

Quality Whether the data is ok, expired, manual, or no-
value

Timestamp The time at which the block received the data

Collection-time The time at which the data arrived into the
diagram

Expiration-time The time at which the data has expired or will
expire
30

Running an Application
You also have the option of toggling animation on or off.

You load your application by using the G2 Load KB menu choice. You run your
application by selecting menu items on the GDA Controls menu.

Once you have developed an application and renamed the top-level module, you
load the KB associated with your top-level module to load your application. GDA
automatically loads the KB files required to run the product.

To load a GDA application:

1 Select Main Menu > Load KB.

2 Enter the complete pathname of the KB you want to load, including double
quotes.

Tip If you do not know the pathname of the file you want to load, enter the name of a
directory and press Return to display a listing of the contents of the directory.
Select a subdirectory or filename from the list that appears and press Return again
until you have located the desired file.

For example, the pathname might look something like this for a Windows
computer:

"C:\Program Files\gensym\g2-8.3r0\gda\myappl.kb"

This loads the top-level module that you renamed, which loads all the
required modules associated with GDA. G2 reports its progress by displaying
a message in the Operator Logbook as each module is finished loading.

3 Select Main Menu > Start.

Running Your Own Procedure When You Start G2

You can perform your own routine when you start G2. To do this, you create a G2
procedure that takes no arguments.

To run your own procedure when you start G2:

1 Select Preferences > Settings > Startup to access the Startup Settings dialog.

2 Enter the name of your procedure in the Post Global Initializer field, then
press OK.

GDA calls the specified procedure after it has finished all its other initialization
steps, and before it restarts the scheduler.
31

To run your own procedure after resetting:

1 Select Preferences > Settings > Startup to access the Startup Settings dialog.

2 Enter the name of your procedure in the Post Global Resetter field, then press
OK.

GDA calls the specified procedure after you reset all blocks using the Controls >
Reset All Blocks menu choice.

Controlling the Flow of Data in an Application

You can control the flow of data in a GDA application in these ways:

• You can inhibit data from being propagated or generated by entry points,
Signal Generator blocks, or Clock blocks.

• You can inhibit data from being propagated by individual blocks by locking
the blocks.

• You can inhibit evaluation (execution) of individual blocks or of all blocks on
a workspace.

You can control the flow of data into an entire application, all blocks on a single
workspace, or a single block.

Enabling and Disabling Data Input

When a GDA application starts running, data input is disabled. Entry points,
Signal Generator blocks, and Clock blocks do not propagate data while data input
is disabled. For those blocks to propagate data, data input must be explicitly
enabled.

Note GDA is configured by Gensym with data input disabled, although an application
can be configured with data input enabled (the steps required to do this are
described below). As a result, you may find that in your application, data input is
enabled.

To enable data input when it is disabled:

 Select Controls > Enable Data Input. A check mark appears next to the
selection to indicate that data flow is enabled.

When a diagram is running, you can disable data input, which prevents data from
flowing through blocks onto their output paths. You might disable data input for
these reasons:

• You are building an application and prefer to turn data entry on and off to test
and revise the diagrams

• An error is occurring and you want to stop analysis to diagnose the problem
32

Running an Application
To enable data input automatically at startup:

1 From the Preferences menu, select Settings > Startup.

2 On the Startup Settings dialog box, select Enable Data Input at Startup, then
press OK.

To disable data input when it is enabled:

 Select Controls > Enable Data Input when it is enabled. When data input is
disabled, no check mark appears next to the selection.

When data input is disabled, you can manually evaluate portions of your diagram
by using the evaluate or override menu choices on blocks in the diagram.

When data input is enabled, you can select a data source for an entry point,
external sensor, or internal simulator, or you can disable or enable individual
signal generators, clocks, or entry points to control the data introduced into your
application. For more information, see Evaluating Blocks and Overriding Block
Values.

Inhibiting Data Flow Through a Block

You can inhibit data from being propagated by a block by locking that block. You
can only lock blocks that you can manually override. You can lock a block in two
ways:

• By selecting lock from the block’s menu

• By connecting the action link from a Lock block from the Action blocks palette
to the block, which locks the block when the Lock block evaluates

For more information about locking blocks, see Locking and Unlocking Blocks.

Enabling and Disabling Evaluation of a Block

You can prevent a block from evaluating in two ways:

• By selecting disable evaluation from the block’s menu

• By connecting the action link from a Disable block from the Action blocks
palette to the block

• By calling the disable evaluation API (see the GDA API Reference)

For more information, see Enabling and Disabling Evaluation.
33

Caution Workspaces provide a Disable menu choice. You should not disable a workspace
that contains GDA blocks. When a workspace is disabled, G2 considers that
objects on the workspace do not exist. GDA does not initialize or compile these
objects, which may cause unpredictable results. If you disable a workspace that
does not contain blocks, make certain that the workspace does not have any
subworkspaces that contain blocks. Also, when in administrator mode, do not
choose the disable menu choice on an individual block.

Toggling Animation

Animation causes these changes in a diagram:

• Blocks flash as they evaluate.

• Inference paths indicate their states by displaying color.

• Blocks having numeric displays update their values.

By default, GDA animates blocks as they evaluate to provide you with feedback
about your running process. Animation causes an application to run more slowly,
so you can improve the performance of your application by turning animation off.

The Controls > Animate menu choice appears checked or unchecked, depending
on whether animation is enabled or disabled.

To start animation when it is off:

 Select Controls > Animate. A check mark appears next to the menu choice to
indicate that animation is turned on.

To stop animation when it is on:

 Select Controls > Animate when it is checked. The check mark next to the
menu choice is removed, indicating that animation is turned off.

Blocks remain highlighted for the duration defined by the Animation Delay.

To set the animation delay:

1 Select Preferences > Settings > Environment to display the Environment
Settings dialog.

2 Change the Animation Delay value, then press OK.

To disable animation on startup:

1 Select Preferences > Settings > Startup to display the Startup Settings dialog.

2 Specify Animation at Startup as no.
34

Running an Application
Allowing Other Processing

By default, when GDA encounters an allow other processing statement in a
procedure, it can process ten blocks. You can change the number of blocks.

To set the number of blocks that can process when allowing other processing:

1 Select the Preferences > Settings > Environment menu choice to display the
Environment Settings dialog.

2 Set Blocks between Allow-other-processing, then press OK.

Setting the Maximum Timeout for Data Seeking

Some blocks use data seeking to obtain values: entry points, signal generators,
filters, and charts. By default, the maximum data seeking timeout is 30.0 seconds.
You can set the maximum amount of time GDA will seek a value before timing
out.

To set the maximum timeout for data seeking:

1 Select the Preferences > Settings > Environment menu choice to display the
Environment Settings dialog.

2 Set Maximum Data Seeking Timeout, then press OK.

Connecting to Remote Processes

When you use the Network blocks in GDA to connect to other G2s, you are using
a remote process. You can control how long GDA looks for a remote process
before returning an error and how often GDA should retry connecting to the
remote process.

To set the remote process timeout period and retry period:

1 Select the Preferences > Settings > Remote Process menu choice to display
the Remote Process Settings dialog:

2 Set the value or values, then press OK.
35

Customizing Menus

Using Menu Preferences

You can specify a menu preference that sets the font size, language, initial menu
bar, and colors of the text and background that GDA uses in its top-level menu
bar. You can create multiple preferences.

To create a new menu preference:

1 Select Preferences > Menus to display the Menu Preferences dialog.

2 To create a new set of menu preferences, click New.

To use the default as a base, click the Use Default button (if it is not selected)
then click New. The Menu Preference Attributes dialog appears.

You can also use an existing preference as a base for the new menu
preferences. First, select a menu preference in the Existing Preferences list,
then click New. The Menu Preference Attributes dialog appears.
36

Customizing Menus
3 To name a menu preference, enter its name in the Preference Name field.

Note You must specify the Preference Name. Also, do not use spaces in the name of
the preference.

4 To specify the size of the characters in the menu bar, enter one of the
following in the Font Size field: small, large, or extra-large.

5 To specify the language, type the name of the language, such as english, in the
Language field.

To use the default language, type none.

6 To specify the menu bar that appears when you start GDA, enter the name of
the menu in the Initial Menu Bar field.

The name of the menu bar must match a G2 Menu System (GMS) user key
value in a GMS menu bar template. To use the default initial menu, type none.
For more information, see the G2 Menu System User? Guide.

7 To specify the colors of the menu text and its background, click on the color
squares shown at the right of the dialog.

You can customize four types of text:

• Normal - unselected text and its contrasting background in the menu bar.

• Highlighted - selected text.

• Header - text in GMS popup menus (not used in GDA).

• Disabled - text that is not selectable, such as user-defined palettes when
none have been defined.
37

When you click the color square, you see a display of available colors. Select
one. The color of the square reflects your choice.

8 To complete specifying your menu preferences, click OK in the Menu
Preference Attributes dialog. The dialog closes.

9 To activate your set of menu preferences, make sure it is selected, then click
OK in the Menu Preferences dialog.

To edit an existing menu preference:

1 Select Preferences > Menus to display the Menu Preferences dialog.

2 Click on the name of the preference, then click Edit.

The Menu Preference Attributes dialog appears.

3 Follow the steps for creating a new menu preference, beginning with Step 4.

To use the default menu preference settings:

1 Select Preferences > Menus to display the Menu Preferences dialog.

2 Click the Use Default button in the Menu Preferences dialog, then click OK.

To delete a menu preference:

1 Select Preferences > Menus to display the Menu Preferences dialog.

2 Select the preference to delete in the Existing Preferences box in the Menu
Preferences dialog, click Delete, then confirm the deletion on the confirmation
dialog that appears. Then, click OK to close the Menu Preferences dialog.

Creating New Menu Preference Objects

When GDA is installed, it contains two menu preferences objects: Gms-default-
configuration, included in the GMS module, and gda-menu-configuration,
included in the GDA module.

GDA determines which menu preferences object controls the menu preferences
by using the GMS API.

Gms-default-configuration is initially defined with a priority of 0; gda-menu-
configuration is initially defined with a priority of 1. By default, a GDA
application displays a menu with its preferences defined by gda-menu-
configuration because it has the higher priority.

When you modify menu preferences by using the Menu Preferences dialog in
GDA, GDA creates a new preferences object and assigns it the name you specify.
GDA assigns the priority of this new object to be 1 greater than the priority of the
previously active preferences object. You choose a set of menu preferences to
control your application’s menu appearance by selecting its name from a list of
menu preferences objects.
38

Customizing Menus
Note It is important to manage menu preferences exclusively within the Menu
Preferences dialog supported by GDA, or using the API supported by GMS.
Because the GDA dialog manages preferences by using only priority, the GDA
menu may not fully override a preference set using the GMS API. Conversely, if
you have given your GMS meaningful priority values, and then use GDA to
choose a new preference, GDA automatically modifies the preferences object's
priority and may make it difficult to maintain the meaning of the priorities you
established.

If you create a new preferences object outside of GDA, it is not necessary to
specify a name for this object. However, if you have an unnamed preference
which you then try to access through the GDA menu, GDA will display an error
message indicating that the object cannot be referenced. This behavior should be
fixed in an upcoming release of GDA.

How GDA Manages the Default Menu Preferences

End users can choose to override menu preferences by reverting to the default
preferences. Each menu preferences object is derived from a “root” preferences
object. This root object supplies the default preferences.

• If the application user selects a preferences object created in GDA and chooses
the Use Default check box, the menu preferences defined by gda-menu-
configuration apply, because this is the root preferences object.

• If the application user selects a preferences object created in GMS and chooses
the Use Default check box, the root preferences object is the User Preferences
Object from which the selected preferences object was derived.

In addition to this section, for more information about customizing menu
preferences, see the G2 Menu System User’s Guide, Chapter 14, “Customizing the
GMS Interface to the User”.

Extending Main Menu Choices

You can extend the menu choices in the main menu bar. The main menu bar is
constructed using the G2 Menu System (GMS) utility. To provide for menu
translation, GMS uses the local text resources feature of the G2 Foundation
Resources (GFR) utility.

Using GMS and GFR, you can create extensions or modifications to the GDA
menu bar. You can display the graphical representation of the GDA menus via the
menu bar.

If you want to add your own custom menu choices to the menus in the GDA
menu bar, begin by displaying the GMS graphical representation of the menu bar.
39

To display the GMS menu bar diagrams:

 Choose Main Menu or Additional Menu in the Show > Menus menu.

For more information about GMS, see the G2 Menu System User? Guide. For more
information about GFR, see the G2 Foundation Resources User? Guide.

Translating Menu Choices

You can use the GFR (Gensym Foundation Resources) module of G2, which is
included with GDA, to translate menu choices to other languages. For more
information, see the G2 Foundation Resources User? Guide.

Miscellaneous Features

Setting Configuration Panel Colors

The Configuration Panels menu item lets you customize the colors of
configuration dialogs that GDA displays when you select the configure menu
choice and when you select the override menu choice.
40

Miscellaneous Features
To customize the colors of configuration panels and override dialogs:

1 Select Preferences > Colors > Configuration Panels to display the
Configuration Panel Colors dialog:

2 To customize the color of dialog titles, text, type-in boxes, and scroll areas,
click on the appropriate box, choose a region, and choose a color from the G2
color palette.

The regions are border-area, background-area, and text-area.

Note You typically choose the same background and border color for dialog titles.

3 To customize any of the other colors, click on a color to display the G2 color
palette.

4 Continue configuring colors as desired, and click OK or Apply.

5 Display a configuration panel to see the new colors.
41

Setting the Color for Titles, Type-in Boxes, Text, and Scroll Messages

The following table describes the four top color settings in the palette. All colors
refer to items within configuration panels displayed using the configure menu
choice.

When you click on a color, choose one of these regions:

You can also set the color that GDA uses to indicate a disabled dialog title, dialog
text, type-in box, or scroll message by clicking on the colors Disabled Colors for
each of the settings described above.

Setting the Color for Display Items Within Configuration Panels

You can adjust the color of these display items within a configuration dialog:

The color
setting labeled... Changes...

Dialog Titles The background, text, and border color of the
title bar.

Dialog Texts The background, text, and border color for
labels.

Type-in Boxes The background, text, and border color for
type-in boxes.

Scroll Messages The background, text, and border color for
type-in boxes displayed in a scrollable
region.

The region named... Specifies...

border-area The border color for the item; use transparent
for no border or background color for no
border.

background-area The background color for the item.

text-area The color of the text for the item.

The display item... Controls the color of...

Dialog The overall configuration panel.

Border The outer border of the configuration panel.
42

Miscellaneous Features
Note GDA only uses the display items shown in the table above; the other display
items appear for future compatibility only.

The following table describes each category of color in the bottom portion of the
dialog:

Radio Button The diamond-shaped buttons used for
attributes with distinct choices, e.g., Logic,
which can be discrete or fuzzy.

Push Button
(Action Button)

The OK, Apply, and Cancel buttons at the
bottom of the configuration panel.

The display item... Controls the color of...

The color
setting labeled... Changes...

Background The background color of the dialog and push
buttons.

Face The interior color of radio, check, and toggle
buttons.

Lamp The color used when radio, check, and toggle
buttons are selected.

Light The top and left borders of a button that is
not selected, the bottom and right borders of
a button that is selected, or the bottom and
right borders of a display item.

Dark The bottom and right borders of a button that
is not selected, the top and left borders of a
button that is selected, or the top and left
borders of a display item.

Disabled The color used for disabled buttons.
43

Setting Network Colors

The Network Colors dialog lets you change the colors that represent the status of
a Remote G2 Process block, described in the GDA Reference Manual.

To edit the default colors of network objects:

1 Select Preferences > Colors > Network to display the Network Colors dialog:

2 Click on one of the colors on the panel to display a table that lets you set three
colors for the regions in the icon for a Remote G2 Process object.

This figure shows you what the regions are:

3 Choose a region to display the G2 color palette.

4 Choose a color and click OK or Apply.

5 Display a network object to see the new colors.

border-area

text-area

background-area
44

Miscellaneous Features
This table describes the colors on this panel:

GDAgdaapps

GDA

•

The object labeled…
Lets you set the colors for a
G2 Remote Process object…

Running Whose remote G2 is running.

Paused Whose remote G2 is paused.

Reset Whose remote G2 is reset.

Timed-Out Which timed-out while trying to establish
a connection.

Connected Which is establishing a connection to the
remote G2.

Not-Connected Which has not tried to establish a
connection.

Error Which failed to establish a connection.
45

46

2

Using Blocks
and Paths
Describes the common features of all blocks and describes how to use the basic
types of paths and their attributes.

Introduction 48

Basic Block Behavior 48

Using Paths 60

Using Path Attributes 70

Creating Customized Path Connections 78

Specifying Initial Values 82

Maintaining a History of Values 83

Specifying How to Handle Multiple Values 91

Specifying and Generating Explanations 92

Specifying Fuzzy Logic Attributes 100

Using Variables and Parameters 104

Evaluating Expressions in Attributes 117

Using the GXL Spreadsheet to Edit Data 123

Understanding the GDA Block Evaluation Engine 125
47

Introduction
This chapter describes the features of blocks and paths, and explains how to
interpret the attributes of each path type. This chapter also discusses attributes
and menu choices common to blocks that are on more than one palette.

For information about attributes and menu choices common to blocks that are on
the same palette, see the chapter that describes blocks on the palette in the
GDA Reference Manual. For information about attributes and menu choices that
appear on only one block see that block’s description in the GDA Reference
Manual.

Basic Block Behavior
Most blocks share several menu choices and attributes that enable you to:

• Read status notes and error messages, described on .

• Add comments to a block, described on .

• Reset the block, described on .

• Evaluate the block, described on .

• Override the block’s value, described on .

• Enable and disable evaluation for a block, described on .

• Clear the block error, described on .

This section describes how these basic menu choices and block attributes work.

For information on common attributes that you can configure for blocks, see:

• Specifying Initial Values

• Maintaining a History of Values

• Specifying How to Handle Multiple Values

• Specifying and Generating Explanations

• Specifying Fuzzy Logic Attributes

Reading Notes and Errors

The Notes and Error attributes of a block display the status of the block. These
attributes appear in the table for the block. You cannot edit these attributes.

To display the notes and error for a block:

 Select table from the block’s menu.
48

Basic Block Behavior
The following figure illustrates the table for a High Value observation block:

The Notes attribute is defined for all G2 items. The Error attribute is defined for all
GDA objects.

Most of the errors you encounter while developing an application are described
in a block’s Error attribute. When GDA finds an error, it turns the color of the
affected block to the error color (yellow, by default) and writes a description of
the error to the Error attribute of the block and to the Error Queue. After you fix
the error, select reset from the block’s menu to clear the Error attribute.

You might sometimes find messages in the Notes attribute, which is used for
status and error information. It contains the text OK if G2 finds no errors in the
block but may contain OK even if GDA finds an error in the block.

Adding Comments to a Block

The Comments attribute enables the application developer associate a comment
with a block. For example, a comment would be useful to describe how a block is
configured. You can also use G2 ProTools to document an application.

To add a comment to a block:

 Display the table for the block, and click on the value of the Comments
attribute. Enter a value in the editor. To create a line break, enter a Ctrl-J.

The following figure shows the table for a Bias block with a text string in the
Comments attribute:

49

To show the comment associated with a block near the block icon:

1 Display the table for the block.

2 Click on an empty place within the area where the value of the Comments
attribute appears to display the table item menu.

3 Select the show attribute display menu choice:

4 The comment appears below the block, as this figure shows:

Resetting Blocks

When you first start G2, GDA automatically resets all the blocks in the
application. restoring all knowledge in the KB to its initial state.

Sometimes you need to reset individual blocks, such as when an error occurs. You
might also want to reset all the blocks in the application. You can reset any block
manually by using a menu choice.

To manually reset an individual block:

 Select reset from the block’s menu.

To reset all the blocks in your diagram:

 Select Controls > Reset All Blocks. GDA asks whether you also want to reset
all paths.

GDA displays a confirmation message before it resets all blocks and reports the
status of all blocks it finds and resets them.
50

Basic Block Behavior
When you reset a block, GDA does the following:

• Sets the block to its initial state. If the block has a Status on Initialization or
Value on Initialization attribute, GDA also propagates the block’s initial
value. For more information, see Specifying Initial Values.

• Clears any error condition. The block’s color is changed from yellow to blue
and the Error attribute is set back to a null string (""). You can also clear errors
for a block without resetting; see Clearing Block Errors.

• Unlocks the block if it was locked, as described in Locking and Unlocking
Blocks.

• Erases the block’s history, if the block maintains a history and if the attribute
Erase History When Reset is yes, as described in Specifying What Happens to
History Upon Reset.

Some blocks do more things when reset. Some blocks that perform an action will
undo that action when reset. For example, the Show Workspace block hides its
workspace when reset. For more information about how resetting a block affects
the block, see the GDA Reference Manual.

Resetting blocks does not set the values of the attributes in the configuration table
to their default values. Also, resetting a block does not reset its output path value.
For information on resetting the path value, see Resetting Paths.

Evaluating Blocks

When you test an application, you can evaluate a block manually even though it
has not received new data.

When you manually evaluate a block, the block uses its existing input values.
Thus, for certain blocks, such as observation blocks, manually evaluating the
block has no effect.

When you evaluate an entry point, the current value is propagated with a new
timestamp.

When you evaluate a block with a single input control path, the block acts as if it
has received a new control signal.

To evaluate a block manually:

 Choose evaluate from the block’s menu.

Overriding Block Values

When you test an application, you can override a block’s output value to make
sure your application responds to it correctly, or to pin-point exactly where an
error is occurring. Also, you override an entry point to test a diagram that uses
entry points that have not yet been connected to a real data source.
51

You can manually override these block’s output value: Entry Points, Signal
Generators, Observations, Conditions, User Query Control Switches, Network
Entry Points, and the Conclusion block.

Overriding the value of a block does these things:

• It propagates the manually entered value.

• It locks the block, which prevents the propagation of values the block receives
from other data sources.

• It propagates a Quality of manual onto the path.

Once a block is locked, only the manual override value is propagated
downstream.

Note When overriding a block’s value, you cannot simultaneously configure the block.

To override the value of a block:

1 Select override from the block’s menu.

2 Enter a value in the edit field of the dialog and press Return.

3 Click OK to apply the value and close the dialog.

Otherwise, to apply the value and leave the dialog open, select Apply. To
prevent applying the value you have entered and close the dialog, select
Cancel.

For example, this diagram shows two Numeric Entry Point blocks providing
input to a Difference block:

When you select override from an entry point’s menu, this dialog box appears:
52

Basic Block Behavior
After overriding the values of both entry points and evaluating the Difference
block, the diagram looks like this. GDA displays the letter M to indicate manual
override, and a lock symbol to indicate that the block is locked:

The Quality of the output path value of the block you override is manual. The
Quality of the output path value for downstream blocks that calculate values
based on a manual value is also manual. For example, here is the table for the
output path of the top Numeric Entry Point block in the example:

Depending on the type of block whose value you are overriding, GDA displays
one of several different dialogs:

GDA displays a dialog box that lets you enter a value. There are four different
override dialogs:

• The data override dialog lets you enter a number, string, or symbol.

• The control override dialog lets you pass a single control signal.

• The discrete inference dialog lets you enter the value .true, .false, or
unknown.

• The fuzzy inference dialog lets you enter a value from 0.0 to 1.0.

When overriding... You get an override dialog with...

A data block An edit box for entering a number, symbol, or
text

An inference block that
uses discrete logic

Radio buttons for selecting .true, .false, or
unknown

An inference block that
uses fuzzy logic

A belief slider from 0.0 to 1.0 for entering a
fuzzy belief value
53

Overriding a Data Block

A data block displays the dialog box in the following figure. The dialog contains a
type-in box where you can enter a number or string.

To enter a value:

1 Click in the edit box, enter the value, and press the Return key.

2 To pass the value, click OK or Apply.

To change the text in the dialog box, attach a Dialog Restriction to the block, and
edit the attributes Override Text and New Value Prompt in the restriction. For
more information, see the description of the Dialog Restriction block in the
GDA Reference Manual.

Overriding a Control Block

Overriding a control block sends a control signal down the block’s output path.
When you select override from the block’s menu, this dialog box appears:

Overriding a Discrete Inference Block

An inference block whose Logic attribute is set to discrete displays the dialog box
in this figure. It contains a list of three radio buttons: one each for .true, unknown,
and .false.
54

Basic Block Behavior
To override the value:

 Click on the value you want, then click OK or Apply.

If a block has the attributes Description When True, Description When Unknown,
and Description When False, you can change the text of its override dialog. Enter
the descriptions for the three choices in these attributes. For more information, see
How to Describe Why a Block Passes True, False, or Unknown.

Overriding a Fuzzy Inference Block

An inference block whose Logic attribute is set to fuzzy displays the dialog box in
this figure. The dialog contains a slider that lets you choose a value between 0.0
and 1.0.

To override the value:

1 Click on the triangle above the line, and drag it along the line until the number
below the line displays the value you want.

2 To pass the value, click OK or Apply.

Locking and Unlocking Blocks

When you override a block’s value, the block displays a lock symbol and an “M”
on the icon, indicating that it is locked and the override is manual.

When a block is locked, it does not respond to input or pass another value.

To stop a block from passing its value:

 Choose lock from the block’s menu.
55

To let a block that you have overridden pass values normally again:

 Choose either unlock or reset from the block’s menu.

You can only lock and unlock blocks that you can also override. Typically, to
prevent data from propagating downstream, you disable evaluation, as described
in the next section.

Enabling and Disabling Evaluation

You can stop a block from passing its output value and responding to new input
values by disabling block evaluation. For example, while you are developing your
application, you may want to disable part of the application so you can
concentrate on another part.

You can enable and disable evaluation of any individual block in a diagram or
all blocks on a workspace.

You can also use the Disable and Enable blocks to toggle a block or workspace
between evaluation and no evaluation. For more information, see the
GDA Reference Manual.

Caution Enabling and disabling blocks and workspaces for evaluation is different from
enabling and disabling blocks and workspaces in G2. Do not use the G2 menu
choices enable and disable for blocks or KB Workspace > Enable and KB
Workspace > Disable for workspaces.

By default, all blocks are enabled for evaluation. Enabling or disabling a block
enables or disables any attached capabilities and restrictions as well.

To disable evaluation of a single block:

 Click on a block that is enabled and select disable evaluation.

Selecting this menu choice causes the block to stop evaluating and prevents data
from flowing downstream from the block.

To enable evaluation of a single block:

 Click on a block that is disabled and select enable evaluation.

Selecting this menu choice causes the block to evaluate. It may also cause data to
flow downstream again.

To disable evaluation of all blocks on a workspace:

 Click on a workspace whose evaluation is enabled and select KB Workspace >
Disable Evaluation.

Selecting this menu choice causes all blocks on the workspace to become disabled.
56

Basic Block Behavior
To enable evaluation of all blocks on a workspace:

 Click on a workspace whose evaluation is disabled and select
KB Workspace > Enable Evaluation.

Selecting this menu choice causes all blocks on the workspace to become enabled.

Note When you enable or disable evaluation of blocks on an Encapsulation or Single-
source Encapsulation block’s workspace, you enable or disable all blocks on the
workspace, including blocks on any subworkspaces of nested encapsulations.

Clearing Block Errors

When a block produces an error when it evaluates, the block turns yellow and an
error message appears. You can clear the error on an individual block without
resetting the block. Resetting a block also clears any errors in the block, as
described in Resetting Blocks.

To clear an error in a block:

 Select the clear error menu choice for the block.

Setting Block Colors

You can change the colors used to show the status of blocks in your diagram. For
example, blocks show a different color when they are on the palette, when you
first clone them from the palette, when they are active, and when they are idle.

When animation is enabled, GDA uses the color preferences you specify for
blocks. When animation is disabled, GDA uses the colors blocks define in their
icon descriptions.
57

To customize the colors of blocks:

1 Select the Preferences > Colors > Blocks & Paths menu choice to display the
Block & Path Colors dialog:

2 The Block Colors on the left of the dialog control the colors that indicate block
states, as described in this table:

3 Choose a block state to change its color. When you click on the colored square
next to the block state, a palette of colors appears.

4 Select a color from the palette of colors.

5 Continue customizing the colors as desired, and click OK to accept the
changes and dismiss the dialog.

6 Toggle animation off and then on to see the change by using the Controls >
Animate menu choice.

Block Color Description

Idle Blocks that are idle.

Running Blocks that are evaluating.

Disabled Blocks that are disabled for evaluation by
selecting disable evaluation on the block
or workspace that contains the block.

Error Blocks in an error state.

Alarm The lines around an Alarm capability that
indicate that the alarm is active.
58

Basic Block Behavior
Setting Alarm Colors

You can change the colors that represent the severity of alarms in Alarm Panels.

To edit the default colors of network objects:

1 Select Preferences > Colors > Alarms to display the Alarm Colors dialog:

2 Click on one of the colors on the panel to display a table that lets you set three
colors for the regions in the icon for an Alarm Panel.

3 Choose a region to display the color palette.

4 Choose a color and click OK or Apply.

5 Display an Alarm Panel to see the new colors.

This table describes the colors on this palette:

The object labeled… Lets you set colors for…

No Alarm (Alarm
Readouts)

An Alarm Readout that is associated with
an alarm that is not active.

No Alarm (Alarm
Displays)

An Alarm Panel that is associated with an
alarm that is not active.
59

Note For more information about Recurring Alarms, Local Alarm Panels, and Group
Alarm Panels, see the GDA Reference Manual.

Using Paths
When a diagram is running, blocks evaluate once per sweep if the block has
received a new value on one of its input paths. Each block processes its input,
then passes the resulting output onto its output path or paths. Any block
connected to that path then uses that value as its input.

Each path carries data compatible with the path type:

Each path has an associated table with attributes, which provide information
about the current path value, the quality of the data, and the time at which the
data arrived. For detailed information about the attributes of paths for the various
path types, see Using Path Attributes.

No Alarm (Alarm
Messages)

A message in an Alarm Queue that is
associated with an alarm that is no longer
active.

Selected Alarms A message in an Alarm Queue that you
have selected.

Inhibited Alarm An alarm capability you have inhibited
with the inhibit command and all the
displays (Alarm Panels and Readouts)
associated with that alarm. This object
brings up the G2 color palette directly.

Severity 0 Alarm to
Severity 15 Alarm

An alarm that is active and has the
specified severity, and all the displays
(Alarm Panels and Readouts) associated
with that alarm.

The object labeled… Lets you set colors for…

This path type... Carries this type of information...

Data paths Numeric, textual, or symbolic values.

Inference paths Truth values (.true, .false, or unknown) or fuzzy
belief values (a number between 0.0 and 1.0)

Control paths Signals which cause blocks to evaluate.

Item paths Instances of items of a particular class.
60

Using Paths
In addition to these path types, GDA has links, for use in conjunction with action
blocks and capabilities.

By default, GDA represents the different types of paths using different colors:

For information about customizing path colors, see Setting Path Colors.

Using Data Paths

Data Paths can pass numeric or text data, or symbols. This table describes data
path attributes:

Paths of type... Have this color...

Data paths Gray

Inference paths Red when .true

Green when .false

White when unknown

Control paths Orange

Attribute Description

Data-value Numeric, textual, or symbolic value.

Collection-time The time that the data first entered the diagram
through an Entry Point, entered G2, or was
concluded. See The Collection-Time Attribute.

Quality The status of the path’s data. See The Quality
Attribute.

Timestamp The time that the path received its value. For more
information, see The Timestamp Attribute.

Expiration-time The time that the current value for the path expires.
For more information, see The Expiration-Time
Attribute.
61

Using Inference Paths

Inference Paths carry two types of values: belief and status. A belief value is a
number from 0.0 to 1.0, where 0.0 is completely false and 1.0 is completely true.
Blocks derive a status value from the belief value, and can be one of the symbols .
true, .false, or unknown. For more information on how a block derives these
values, see Specifying the Type of Logic to Use.

This table describes the inference path attributes:

In diagrams, inference paths change color to display the status values they are
carrying. This table lists the standard inference path colors:

To change these colors, see Setting Path Colors.

Filtering Data Passed to Inference Paths

If the value of a variable or parameter connected to an inference path does not
change, the variable or parameter does not pass a new value onto the path.

Attribute Description

Status-value One of the symbols .true, .false, or unknown.

Belief-value A number from 0.0 to 1.0, where 0.0 is false and 1.
0 is true.

Quality The status of the path’s data. See The Quality
Attribute.

Timestamp The time that the path received its value. For
more information, see The Timestamp Attribute.

Collection-time The time that the data first entered the diagram
through an Entry Point, entered G2, or was
concluded. See The Collection-Time Attribute.

Expiration-time The time that the current value for the path
expires. For more information, see The
Expiration-Time Attribute.

Status-value Standard Color

.true red

.false green

unknown white
62

Using Paths
The same thing is not true for data paths or control paths; variables and
parameters always pass data values and control signals onto the path, regardless
of whether the data value changes.

Using Control Paths

Control Paths carry control signals, which do not have values, but which pass an
evaluation signal between blocks.

This table describes the control path attributes:

Using Item Paths

You use item paths with custom blocks to pass any G2 item through a block.
Blocks supplied with GDA do not have item paths.

You use item paths for:

• Discrete event processing, for example, to process individual items in an
assembly line

• Processing complex data, for example, to process multiple items using an item
list or item array

In general, an item path can only have a single item on it at one time. For
information on how to process multiple items on an item path, see the GDA API
Reference.

Creating Item Paths

You add items paths to custom blocks by editing the class definition of the block,
as described in Editing an Existing Custom Subclass.

Placing an Item Onto an Item Path Interactively

To place an item onto an item path interactively:

 Connect a symbolic variable or parameter to the item path and manually
override its value.

Attribute Description

Timestamp The time that the path received its value. For
more information, see The Timestamp
Attribute.

Quality The status of the path’s data. See The Quality
Attribute.
63

The following figure illustrates a symbolic variable connected to a custom block
with an input and output item path. The custom block simply passes the item
through the block. Enter the name of an item or a symbol representing an existing
class into the Type-in override dialog. GDA places an instance of the item or class
onto the item path.

Note If there is already an item on the output path and that item is transient, overriding
a symbolic variable or parameter breaks the G2 relation between the item and the
path and deletes the item. If there is an item on the output path and that item is
permanent, however, GDA removes the item from the path but does not delete it.

Placing an Item Onto an Item Path Programmatically

To place an item onto an item path programmatically:

 Connect a symbolic variable or parameter to the item path, and use a
procedure, a rule, or an action button to conclude a value into the symbolic
variable or parameter.

The following figure illustrates a symbolic variable connected to a custom block
with an input and output item path. The custom block simply passes the item
through the block. The action button concludes a value for the symbolic variable
symb-ep. The new value is the symbol bottle, which represents an object class.

When creating custom blocks, you can also use an API procedure to set an item
onto an item path programmatically. In addition, you can define a function that
creates a default item for the path when using an API procedure to get an item

override
64

Using Paths
from a path. For more information on creating custom blocks using item paths,
see the GDA API Reference.

Displaying the Item on the Path

To display the item on the path:

 Select show item from the path’s menu.

GDA displays the item in a dialog.

The following figure shows this dialog for a custom block with input and output
item paths. The item on the path represents the bottle class using the default icon.

If the item on the path is an instance of the bottle class, selecting show item goes to
the original workspace on which the instance is defined and highlights the item
with an arrow.

Resetting Paths

You can reset the values of a specific path or all paths. Resetting the value of a
path sets it to the Value on Initialization of the block.

To reset the value on a particular path:

 Select reset path from the path’s menu.

To reset the values of all blocks and paths:

 Select Controls > Reset All Blocks, then choose to reset blocks and paths.

Using Links

A link is a special-purpose type of connection you can use to add a feature or
behavior to a block, or to perform an action on a block. For example, you use links
to add a chart capability to a block.

GDA provides these types of links:

• Action Links

show item
65

• Capability Links

• Restriction Links

An Action Link connects a block that performs an action on a target block to the
target block. For example, you can use a Reset block to reset a target block using a
control signal by attaching the target block to the Action Link associated with the
Reset block. When the Reset block receives a control signal, GDA resets the target
block. Action Links appear on many of the Action blocks.

A Capability Link add features to blocks, such as charts and clocks. Capability
Links appear on some of the blocks in the Capabilities palette.

A Restriction Link customizes a block’s capabilities. For example, you can
customize the override dialog and determine the source of input for a GDA
diagram. Restriction Links appear on some of the blocks in the Capabilities
palette.

Note Although they have the same cross-section, Capability and Restriction Links are
not the same. For example, if you create a Capability and then delete it, leaving
the Capability Link stub attached to the block, you cannot drag a Restriction Link
into the stub. You must delete the Capability Link first and then connect the
Restriction using its own stub.

To connect any of the three types of links to a block:

 Select the link attached to a block and click in the middle of the block to which
you want to connect the link.

The block to which the link is connected need not have a pre-existing stub.

Using Connection Posts

Connection Posts enable paths to cross workspace boundaries so you can create
diagrams that span several workspaces. G2 passes the data from a named sending
connection post to all receiving connection posts having the same name. You can
also use connection posts to communicate data within the same workspace.

Note Unlike other blocks, you specify a name for a connection post by configuring it.

GDA enforces these rules for connection posts:

• Connection posts that are communicating data must have the same name.

• More than one connection post cannot send data to the same receiving
connection post.

• The different types of connection posts correspond to the different types of
paths. You must connect connection posts to paths of the same type.
66

Using Paths
For example, this diagram passes the noisy sine wave signal from the Testing
workspace to the Diagrams workspace using connection posts:

To create a connection post that connects two workspaces:

1 Clone a connection post of the desired type from the Connections palette.

2 Connect the input stub of the connection post to the output stub of the block
whose value you want to flow to another workspace.

3 Drag the output stub of the connection post into the connection post to delete
the stub. (It is not necessary to delete the unused stub.)

4 Configure the connection post and specify its name.

5 Clone another connection post of the same type, and place it on the workspace
where you want to receive the data.

6 Connect the output stub of the connection post to the input stub of the block
on that workspace to which you want data to flow.

7 Drag the input stub of the connection post into the connection post to delete
the stub. (Again, it is not necessary to delete the unused stub.)

8 Configure the connection post and specify the same name as the sending
connection post.

To create a connection post that connects to an existing path:

1 Clone a connection post of the desired type from the Connections palette.

2 Connect the input stub of the connection post to the path between two blocks
whose value you want to flow to another workspace.

3 Follow steps 3 through 8 in the previous sequence of steps.

Connection posts

Connection post
67

Highlighting Paths and Connection Posts

If your diagram is large and contains connection posts, you might want to
highlight a path to see where it goes. Also, you can find matching connection
posts quickly by highlighting them.

To highlight a path:

 Choose highlight from the path’s menu. GDA colors the path using a
contrasting color.

This diagram shows the paths connected to the A-CP connection posts
highlighted:

You can also highlight connection posts directly, which also displays large arrows
next to the connection posts.

To highlight a connection post:

 Choose highlight from the connection post’s menu. GDA colors the connection
post a contrasting color and places an arrow next to each connection post of
the same name.

This diagram shows the A-CP connection posts highlighted:

To stop highlighting a path or connection post:

 Choose do not highlight from the path or connection post’s menu.

Setting Path Colors

You can change the colors used to show the status of inference paths in your
diagram. For example, inference paths display red when true, green when false,
and white when unknown. You can also change the color GDA uses to highlight
paths.
68

Using Paths
When animation is enabled, GDA uses the color preferences you specify for paths.
When animation is disabled, GDA uses the colors paths define in their icon
descriptions.

To customize the colors of paths:

1 Select the Preferences > Colors > Blocks & Paths menu choice to display the
Block & Path Colors dialog:

2 The Path Colors on the right of the dialog control the colors that indicate
inference path states and the color of a highlighted path, as described in this
table:

3 Choose a path state to change its color. When you click on the colored square
next to the path state, a palette of colors appears.

4 Select a color on the palette of colors.

5 Continue customizing the colors as desired, and click OK to accept the
settings and dismiss the dialog.

Path Color Description

No-Value No value on the path.

True The path has a Status-value of .true.

False The path has a Status-value of .false.

Unknown The path has a Status-value of unknown.

Highlight The path is highlighted with the highlight menu choice.
69

6 Toggle animation off and then on to see the change by using the Controls >
Animate menu choice.

Using Path Attributes
Each type of path has associated path attributes that provide information about
the status of the value on the path. This table summarizes the attributes available
for the basic types of paths:

The sections that follow explain the possible values for the Quality, Timestamp,
Collection-time, and Expiration-time attributes. For information on the Data-value,
Status-value, and Belief-value path attributes, see Using Data Paths and Using
Inference Paths.

The Quality Attribute

Quality is a system-generated attribute for data, inference, and control paths that
specifies the status of the path’s data. Quality can have any of the values in the
following table:

Data paths
have...

Inference paths
have...

Control paths
have...

Item paths
have...

Quality Quality Quality none

Timestamp Timestamp Timestamp

Collection-time Collection-time

Expiration-time Expiration-time

Data-value Status-value

Belief-value

A Quality value of... Means...

ok The value is current or is derived from current
data and is not entered manually.

manual The value is current and is entered manually or is
derived from a value that is entered manually. An
example is a value you enter using the override
menu choice for an entry point.
70

Using Path Attributes
The order of values for Quality shown in the table above defines the quality
hierarchy, where ok is the highest quality and expired is the lowest. GDA uses the
quality hierarchy to resolve the output path quality for blocks with multiple
inputs, as explained in Determining Output Path Attributes for Peer Input Blocks.

Some blocks optionally require a full history of values before passing a value.
These include all of the blocks on the Time Series palette, as well as the Process
Capability Index block on the SPC palette. For these blocks, if the attribute
Require Full History is yes, the output path has a Quality of no-value when the
history is not full. For more information on this attribute, see Specifying What to
Do With Partial History.

The Timestamp Attribute

Timestamp is a system-generated attribute for data, inference, and control paths
that specifies the current real subsecond time at which a path receives a value.
Each time the path receives a new value, Timestamp is updated. Timestamps are
unique.

The Collection-Time Attribute

Collection-time is an attribute for data and inference paths that indicates the time
at which data originally either entered the diagram, entered G2, or was
concluded.

When variables are used as entry points, GDA uses the G2 current time as the
Collection-time. For more information, see Using Variables and Parameters.

For a description of how GDA resolves the Collection-time for blocks with
multiple inputs, see Determining Output Path Attributes for Peer Input Blocks.

expired The value is expired based on the Expiration-time
attribute.

no-value The path does not have a value yet. A path has a
Quality of no-value before it has received any
data, or in some cases, after the block has been
reset; thereafter, the Quality will never be no-value
again. For an explanation of how different types
of blocks handle no-value inputs, see Determining
How Blocks Use no-value Inputs.

A Quality value of... Means...

ok The value is current or is derived from current
data and is not entered manually.
71

The Expiration-Time Attribute

Expiration-time is an attribute for data and inference paths, which you use with
G2 variables to determine whether and when the current value for a path is
expired.

Expiration-time can have either of the values in the following table:

If Expiration-time is a number, the current value may still be valid, depending on
the status of the Quality attribute for the path. If Quality is not expired and
Expiration-time is a number, then Expiration-time specifies the time at which the
value will expire.

You can suppress the Expiration-time path attribute value to save computational
resources or to achieve compatibility with earlier releases. By default, whenever a
block’s data expires, the block evaluates using the new expired input, which
causes downstream blocks to evaluate. In your application, you might prefer not
to have expired data cause blocks to evaluate.

To prevent blocks from evaluating when data expires:

1 Select the Preferences > Settings > Environment menu choice to display the
Environment Settings dialog.

2 Set Propagate Expiration Events to no, then press OK.

Specifying Validity Interval for a Variable

The Expiration-time depends on the Validity Interval, which determines how long
the value remains valid. Validity Interval is an attribute for all entry points that
you specify in the configuration panel for the block.

If Expiration-time is... Then...

none The value is always valid.

a number The value will expire or has
expired at the given timestamp.
72

Using Path Attributes
This figure shows how to specify Validity Interval for a Numeric Entry Point:

You can also set the Validity Interval for a variable connected to any block, as
described in Using Variables and Parameters. To do this, specify Validity Interval
in the variable’s table:
73

The following table describes the possible values for this attribute:

Determining How Blocks Use no-value Inputs

Generally, blocks ignore input paths with a Quality of no-value. This has different
implications, depending on the type of block.

Peer input data blocks ignore unattached stubs on the block, as well as connected
paths that have never received a value. For example, if a Summation block has
three input paths but only two of them are connected, the unconnected path has a
Quality of no-value and is ignored.

Peer input logic blocks behave the same way as peer input data blocks, ignoring
unattached stubs on the block, as well as connected paths that have never
received a value.

Note Peer input logic blocks can have an inference output path with a Status-value of
unknown and a Quality other than no-value, e.g., ok. However, the only time a
peer input logic block has an inference output path with a Status-value of
unknown and a Quality of no-value is before the block receives a value.

Some non-peer input blocks, such as the Event Window Gate, do not require all of
their inputs to evaluate. So, if one or more inputs have a Quality of no-value, the
block can still evaluate.

Non-peer input blocks that require all of their inputs to evaluate do not place a
value onto an output path if the block has a no-value input. For example, a
Difference block can only evaluate if both of its input paths are specified. If this
Difference block has an input whose Quality is no-value, the block does not
evaluate.

If Validity Interval is... Then...

an integer and a time
period, e.g., 5 seconds

The value is valid for the specified time
period.

supplied The inference engine computes the value
using a rule or procedure.

indefinite The value is always valid (default).
74

Using Path Attributes
Determining Output Path Attributes for Peer Input
Blocks

The attributes of the input paths for peer input blocks determine the attributes of
the output path. This table summarizes the general rule for resolving output path
attribute values for peer input blocks:

For custom blocks, GDA resolves output path attribute values using the API
procedures described in the GDA API Reference.

Determining Whether a Block Uses Expired Inputs

You can determine whether a peer input block includes expired inputs in its
internal calculation. For example, you can ignore input paths for a Summation
block whose Quality attribute is expired. In this case, the resulting output path
would never have a Quality of expired.

table

This attribute... Is resolved in this way...

Quality The lowest quality of all of the input paths based on
the quality hierarchy (see The Quality Attribute).

Collection-time The maximum collection time of all of the input
paths, i.e., the most recent collection time.

Expiration-time The minimum expiration time of all of the input
paths, i.e., the expiration time of the first path to
expire.
75

All peer input blocks include the following attribute in their tables for controlling
whether expired data is to be included in the block’s calculation:

This figure illustrates the configuration dialog box for a Summation block, which
shows the default value for Use Expired Inputs:

If all the inputs to a peer input block are expired, and Use Expired Inputs is no, the
block does nothing.

Example of Determining Path Attributes Using a Peer Input Block

Suppose you have two Entry Points connected to a Summation block. Each Entry
Point uses an embedded variable, which specifies Validity Interval as 5 seconds.

The attribute... Determines...

Use Expired Inputs Whether to include expired values in the
block’s internal calculation, i.e., inputs with a
Quality of expired. The default value is yes.

Validity Interval = 5 seconds

Validity Interval = 5 seconds
76

Using Path Attributes
The following figure compares the tables for the two input connection paths with
the table for the output connection path for the Summation block whose Use
Expired Inputs is yes. Notice that the Expiration-time of the Summation block’s
output path is the minimum of the two input Expiration-time attributes, and the
Quality of the Summation block’s output path is expired, which is the lowest
quality of all of the input path qualities.

dp-out of EP-1

dp-out of Summation block

dp-out of EP-2
77

The following figure shows the same tables when Use Expired Inputs is no. In this
case, GDA ignores the input path associated with EP-1 in the calculation of the
sum because its value has expired; thus, the output path attributes are identical to
the EP-2 input path attributes.

Creating Customized Path Connections
You can create customized path connections to pass particular types of data for
use with custom blocks. For example, you could create a customized item
connection path for passing lists, arrays, or any other defined item class.

The reason for doing this is to prevent blocks with different path types from being
connected.

Creating a New Connection Subclass

The first step in creating a customized connection path is to create a new subclass
of connection based on an existing GDA connection class. Typically, you create a
new connection subclass based on the gdl-item-path connection class. However,
you can also create customized connection subclasses based on gdl-data-path,
gdl-inference-path, gdl-action-link, or gdl-path.

dp-out of EP-1

dp-out of Summation block

dp-out of EP-2
78

Creating Customized Path Connections
Note The name of the new connection post subclass must be of the form
connection-subclass-name-connection-post, e.g., custom-item-path-connection-
post, in order to be recognized by GDA when using with blocks.

To create a new connection subclass:

1 Click on the background of a workspace, and select KB Workspace >
New Definition > class-definition > connection-definition.

2 Choose table from the connection definition to display its table.

3 Specify a unique symbol for Class-name.

4 Specify the Direct-superior-classes as gdl-item-path.
79

For example, the following figure shows the result of creating a new connection
subclass for passing arrays:

80

Creating Customized Path Connections
Customizing the Connection Path Regions

GDA can only animate GDA-defined connection path regions. Therefore, to
customize the existing regions, specify new colors for the GDA-defined
connection path region names in the Cross-section-pattern attribute. If you want
to create new regions, you must define the custom regions in addition to the GDA
regions.

The following table shows the names of the GDA-defined regions for each type of
connection path:

For example, to change the default color for the sides region of a custom
connection path based on gdl-data-path, specify the attribute Cross-section-
pattern as follows:

sides = blue, center = white, type = gray

To add new regions, you must specify the existing GDA regions first, followed by
the new regions. The new regions can refer to the GDA-defined regions as colors:

sides = black, center = white, type = gray;
1 sides, 2 blue

Adding Custom Connections to a Custom Subclass

To add custom connections to a custom subclass block, use G2 to edit the class
definition of the custom class to use the custom connections.

To add custom connections to a custom subclass:

1 Select Main Menu > Inspect to go to the class definition of your custom class,
for example, go to power-block.

2 Use G2 to edit the Stubs attribute of the class definition to refer to the custom
connection class, or any one of GDA’s existing connection classes.

The GDA class... Defines these named regions...

gdl-data-path sides, center, type

gdl-item-path sides, center, light, dark

gdl-inference-path sides, center

gdl-action-link sides, center

gdl-path sides, center
81

Specifying Initial Values
Certain blocks let you specify the value they pass when you first start G2 or when
you reset the block. This value is called the initial value.

Blocks that define these attributes pass initial values even if data input is not
enabled.

Specifying an Initial Data Value

You can set the initial value for blocks that pass data values.

To set the initial value for data blocks:

 Set the attribute Value on Initialization to one of these values:

Specifying an Initial Control Value

The Control Entry Point lets you specify how many control signals it passes when
you first start G2 or reset the block.

To specify the number of control signals to send:

 Set the attribute Value on Initialization to one of these values:

The Control Entry Block is the only Action block with this attribute.

When Value on Initialization is… Then the block does this…

a number, string, or symbol Sets the output path’s dp-out to the
value and sets the Quality of its
output path to ok.

no-value Sets the Quality of the output path to
no-value and leaves the output
path’s dp-out unchanged.

none Leaves the output path and dp-out
unchanged.

When Value on Initialization is… Then the block does this…

an integer value Passes this number of control signals
on its output path.

no-value or none Passes no control signals.
82

Maintaining a History of Values
Specifying an Initial Status Value

You can set the initial value for certain blocks that pass inference values. You can
also set the initial value for Belief Entry Points.

To set the initial value for an inference block:

 Set the attribute Status on Initialization to one of these values:

Maintaining a History of Values
Many blocks can store input values and let you perform operations on this
history of values. A history can store either data or inference values. Blocks can
perform these operations on their history of values:

• Statistical computations on a history of data values. For example, the Moving
Average block in the Time Series palette enables you to compute the average
of the history of values. Other blocks in this palette enable you to perform
other computations on the history of values.

• Operations on a history of inference values. For example, the Average Belief
Gate block in the Temporal Gates palette enables you to compute the average
of the history of inference values. Other blocks in this palette enable you to
perform other operations on the history of inference values.

• Test whether values are within or outside a specified range of values. The In
Range Pattern and Out of Range Pattern blocks in the Observations palette
perform these operations.

You can control how many values are retained in the block history. You can also
control how often the block performs its operation and propagates its result. For
example, the Moving Average block can be defined to compute the average of 100
points and propagate the computed average every time it receives a new point, or
when it receives every 100th point, or at some other interval.

This section describes how to set the size of the history, and how the block uses
the history.

When Status on Initialization is… Then the block does this…

true, false, or unknown Sets ip-out to the value and sets the
Quality of its output path to ok.

none Leaves the output path and ip-out
unchanged
83

How the History Feature Works

Each block that supports the history feature uses several attributes to define how
it is used: Sample Type, Sample Size, Update Type, Update Size, Erase History on
Reset, and Require Full History.

When a value arrives at a block that maintains a history of values, these steps
occur:

1 GDA determines whether the value is monotonic. A value is monotonic if its
collection time is newer than the collection time of the most recent value in the
history. For more information, see How GDA Handles Nonmonotonic Values.

2 If the value is monotonic, GDA determines whether any values in the block’s
history are to be deleted. The Sample Type and Sample Size attributes
determine the number of values maintained in the block’s history. For more
information, see the next section, Specifying the Size of the History.

3 GDA next determines whether the block gets evaluated. The Update Type and
Update Size attributes determine when the block evaluates. For more
information, see Specifying When to Propagate Data.

Two other attributes affect the block history. The Erase History on Reset attribute
determines what happens to the block history when the block is reset. Finally, the
Require Full History attribute determines whether the block evaluates when the
history is not complete.

All these steps and attributes are described in the sections that follow.

Specifying the Size of the History

You can choose whether the history of values is to contain a specific number of
values or all values arriving at the block within a specific amount of time. Also,
you can define the history as containing all points arriving at the block since the
block was last reset.
84

Maintaining a History of Values
The Sample Type and Sample Size attributes determine how the history is
defined. These attribute values are described in this table:

For example, if Sample Type is points and Sample Size is 60, the block stores the
most recent 60 points. If Sample Type is time and Sample Size is 60, the block
stores the points received in the last 60 seconds.

How GDA Handles Point-Based Histories

When the Sample Type for a block is points, the block collects its input points,
storing both the value and collection time, until the number of points collected is
equal to the Sample Size attribute value. When another input value arrives at the
block, the oldest point is discarded. The history never contains more than the
specified number of points.

How GDA Handles Time-Based Histories

When the Sample Type for a block is time, the block collects its input points,
storing both the value and the collection time. As each point is received, its
collection time (Tnewest) is compared to the collection time of the oldest value in
the history (Toldest) and the difference is compared to the Sample Size (SS):

• If any values in the block history are older than the newest value by more than
Sample Size seconds, they are removed from the history:

If Tnewest - Toldest > SS, discard oldest point (repeat as necessary)

• If the oldest value is less than the Sample Size number of seconds older than
the most recent value, the oldest value is retained in the history:

If Tnewest - Toldest  SS, retain oldest point

The history contains all points whose collection times fall within this range:

[Tnewest - SS, Tnewest]

If Sample Type is… The history is defined as…

points A specified number of data or inference
values (points). The Sample Size attribute
specifies the number of points.

time All points received within a specified period
of time. The Sample Size attribute specifies the
number of seconds.

fixed If the Erase History on Reset attribute is true,
the history is all the points received since the
block was last reset. Otherwise, the history is
all the points received since G2 was started.
The Sample Size attribute is ignored.
85

Note Blocks accept nonmonotonic values (values whose collection times are earlier
than the current time). For more information, see How GDA Handles
Nonmonotonic Values.

How GDA Handles Histories When the Sample Time is Fixed

When the Sample Time is fixed, the block accumulates values in its history until
either of these occurs:

• G2 is restarted.

• The block is reset (if the Clear History When Reset attribute is true; otherwise,
resetting the block has no effect on the history).

Caution Depending on the application, if G2 can run indefinitely or if resetting the block
depends on the occurrence of an unpredictable event, using a Sample Time of
fixed can have a destructive effect on the application. Data accumulated by the
block is stored in memory, and unrestricted accumulation of values in the block
history can cause G2 to shut down. Instead, use the Sample Time settings of either
points or time and set relatively large values of the Sample Size attribute.

Performance Issues

Storing a history of values defined by a Sample Time of points is faster than when
the history is defined by a Sample Time of time. When Sample Time is time, the
collection time for each new point must be compared to the oldest point in the
history; if the oldest point is discarded, the collection time for the new point is
then compared to the next-oldest point, until no more points are deleted.

Deciding Which Sample Time Option to Choose

Generally, determining whether to use a point-based or a time-based history
depends on the application. Here are some suggestions:

• Setting the Sample Size attribute depends on how many points determine a
significant sample size and how comfortable you are discarding data.

• If inputs are relatively regular (arrive at regular or almost regular time
intervals), use points.
86

Maintaining a History of Values
• If inputs are irregular, the choice may not be obvious. You may need to decide
which option to use based on how meaningful old data is or how useful
computations are that are based on few points.

• If you know you want to examine all data gathered within a fixed amount of
time (such as the duration of a shift), use time and specify the number of
seconds. This table can be useful:

• Unless you reset blocks frequently, avoid using the fixed option.

Specifying When to Propagate Data

You can control how often the block performs its operation and propagates the
result using the Update Type and Update Size attributes. These attribute values
are described in this table:

How GDA Handles Point-Based Updates

GDA handles point-based updates by evaluating the block when it has
accumulated Update Size points since the block last evaluated.

For example, if Update Type is points and Update Size is 10, the block performs
its operation and passes one value after it has received 10 points, another value
after it has received 20, and so on.

Hours Seconds

1 3600

2 7200

4 14400

8 28800

If Update Type is… The block performs its operation and passes a
value…

points Every Update Size points it receives.

time After Update Size seconds passed since the
last time the block evaluated and the block
receives a new value.
87

How GDA Handles Time-Based Updates

GDA handles time-based updates in a more complicated way. Each time the block
evaluates, it stores the current time (Tcurrent). The block then computes the next
time the block expects to evaluate:

Tnext-eval = Tcurrent + Update Size

Then, when the block receives an input value, it examines its collection time
(Tnewest) and determines whether the block is to evaluate:

• If Tnewest < Tnext-eval, the block does not evaluate.

• If Tnewest  Tnext-eval, the block evaluates.

This figure illustrates how GDA determines which values in the block history are
used in the block’s computation when Sample Type is points, Sample Size is 10,
Update Type is time, Update Size is 100, and new points enter the block:

As points enter the block, the block collects each data value and its collection time
and checks to determine whether any points are to be deleted from the block
history. Point B arrives at the block with a collection time of 85. Point B is the 10th
point in the block history, so the history is now full (the Sample Size is 10). The
block does not evaluate because fewer than 100 seconds have elapsed. Then, point
C arrives at the block, with a collection time of 105. Because point C is the 11th
point, point A is deleted from the history. Because the Update Size is 100, the
block evaluates and stores the current time, 105.

The next data point that causes the block to evaluate is the first value having a
collection time  205 (the last time the block evaluated + 100, the Update Size).

Performance Issues

Normally, blocks with history perform their computation on all the values in the
history each time they evaluate. For some blocks, another algorithm provides
more efficient computations.

Whenever exactly one point is added to the block history since the last evaluation
and either zero or one point is deleted from the history, these blocks use the
alternative algorithm.

20 40 60 80 100 1200

B
C

A

88

Maintaining a History of Values
When GDA uses the standard algorithm, increasing the Update Size produces
greater average execution speed. However, if increasing the Update Size causes a
switch from the new algorithm to the standard algorithm, average execution time
can increase. Computation times depend on both the type of block and the total
number of points in history.

These blocks and gates use the new algorithm: Average Belief gate, Integrator
block, Max Belief gate, Median Input Value block, Min Belief gate, Moving
Average block, Moving Range block, Process Capability Index block, Root Mean
Square (RMS) block, and Variance block.

Specifying What Happens to History Upon Reset

When a block is reset, you can choose to retain or delete all values in the block’s
history.

For example, you have built a diagram to monitor the output of a manufacturing
process. The diagram contains a Variance block that passes on the standard
deviation of all points received each hour. You notice that after some time, the
standard deviation has begun increasing, so you decide to halt the process to
correct the problem. You direct the operator to disable evaluation until the
correction is made, then reset the Variance block. In this situation, any data held
in the Variance block’s history are not useful for the calculation of the next
standard deviation, so you choose to erase the block history when the block is
reset.

To specify what happens to a block’s history when you reset the block:

 Set the Erase History When Reset attribute according to this table:

If Erase History When Reset is… The block does this...

yes Erases its history when you reset.

no Retains the values in its history
when you reset.
89

Specifying What to Do With Partial History

When a block evaluates, it performs its operation based on the points in its
history. When an input value is received that causes the block to evaluate, the
block has full history or partial history depending on these factors:

• If Sample Type is points, if the history contains the number of points specified
by the Sample Size attribute, the block has a full history. Otherwise, the block
has a partial history.

• If Sample Type is time, if the history contains values whose range of collection
times meets or exceeds the amount of time specified by the Sample Size
attribute, the block has a full history. Otherwise, the block has a partial
history.

You can specify whether or not the block is to evaluate only with a full history.

To specify whether a block computes a value only with a full history:

 Set the Require Full History attribute according to this table:

For example, suppose your application has a block with these attributes:

• The Sample Type is points and the Sample Size is 10.

• The Update Type is time and the Update Size is 60 seconds.

• A point is received by the block about once every 10 seconds.

The block is scheduled to evaluate for the first time when it receives a value after
60 seconds have passed. At 60 seconds, the block history contains only 6 points.

• If Require Full History is no, the block passes a value computed using those
six points. The block next evaluates after another 60 seconds has passed and
the block receives another point.

• If Require Full History is yes, the block does not pass a value because the
history is full when it contains 10 points. Each time the block receives a new
value, GDA determines whether the block evaluates. In this example, the
block evaluates for the first time when it has received 10 points.

If Require Full History is… The block does this...

yes Evaluates and passes a value only
when it has a full history.

no Evaluates and passes a value even if
it has a partial history.
90

Specifying How to Handle Multiple Values
How GDA Handles Nonmonotonic Values

A nonmonotonic value is a value that has a collection time that is less than or
equal to the collection time of a value already in the block’s history. History
blocks accept nonmonotonic values and insert these points into history, marking
them with their collection time.

If an existing value has the same collection time as a new value, the new point
replaces the existing one and does not increment the count of points in the
history.

If no existing value has the same collection time as the new point, the new point is
inserted into the proper place in the history and the count of points in the history
is incremented. Depending on the Sample Type, GDA may take further action:

• If the Sample Type is points and the new value causes the number of value to
exceed the Sample Size, the oldest value is deleted.

• If the Sample Type is time and the new value is older than the current time
minus the Sample Size, the new value is discarded.

If the new point causes the block to evaluate, the block propagates its output with
the collection time of the latest data point, regardless of the order of the collection
times of the data points in history.

Specifying How to Handle Multiple Values
Some blocks let you choose what they do when they receive an input value while
they are already executing. These are called multiple values.

To specify how to handle multiple control signals:

 Specify a value for the attribute Multiple Invocations.
91

The table below lists the possible values for Multiple Invocations:

Generally, the blocks with the Multiple Invocations attribute are those that may
take a significant amount of time to evaluate, such as the Data Delay and Control
Counter.

Specifying and Generating Explanations
Many GDA inference blocks enable you to define and display descriptions of
their current output values. For example, you could specify that when a block
passes true, its description is "the temperature is too high" and when the block
passes false, its description is "the temperature is OK".

You can specify descriptions for most inference blocks, the Inference Output
block (Control Action), the Belief Displays (Path Displays), the Belief Transmitter
(Network Interfaces) and the Belief Entry Point and Belief Network Entry Point.

GDA uses these descriptions in these cases:

• As a clause in an explanation generated by the menu choices current
explanation, explain alarm, explain alarm absence, explanation of last true,
explanation of last false, and explanation of last unknown.

• To describe choices in a dialog box, such as the override dialog (the dialog is
described in Overriding a Discrete Inference Block)

The next two sections describe how to specify descriptions for blocks and how
GDA uses these descriptions to generate explanations for a diagram’s state.

If Multiple Invocations
is…

The block does this when it receives a
control signal and it is already executing…

ignore Discards the incoming values. The block
executes only when it’s idle and it receives an
input value.

queue The block increments the count of waiting
values. When it’s finished executing, it checks
whether that counter is one or greater. If so, it
decrements the counter and executes again,
using the values on the input paths at the
execution time.

ok Allows simultaneous executions. The block
increments the count of invocations running
and starts another process to execute for it.
When an execution finishes, the block
decrements that count.
92

Specifying and Generating Explanations
Specifying an Explanation

This section shows you how to define and display these descriptions for the
blocks listed above.

• The attributes that describe why a block is passing a true, false, or unknown
value.

• The attribute that describes a block’s input value.

This section also describes how to concatenate text in these descriptions, to
provide lengthy and precise explanations of complex conditions.

How to Describe Why a Block Passes True, False, or Unknown

To specify the description:

1 Select configure from the block’s menu.

2 Select Descriptions on the block’s configure dialog.

3 On the Descriptions dialog, specify string values for one or more of the
attributes When True, When False, and When Unknown that describe why the
block is passing a specific value. The dialog looks like this:

By convention, the string is a short sentence with no capitalization or
punctuation. Some examples are "the temperature is too high", "engine rpm
exceeds recommended maximum", or "pressure of T128 is over the safe limit".

GDA uses these strings to create an explanation for a block’s value. For example,
if a High Value block has the When True attribute set to "temperature is too high"
and a Conclusion connected to that block has a When True set to "tank may
overheat", GDA produces this explanation when the Observation passes true:

tank may overheat because temperature is too high
93

GDA also uses these strings to describe the choices in many dialog boxes,
including the override dialog. For example, this figure shows both unmodified
and modified override dialogs:

Describing the Block’s Input Value

To describe the block’s input value:

1 Select configure from the block’s menu.

2 Select Descriptions on the block’s configure dialog.

3 Set the Input attribute to a string that describes the block’s input value.

By convention, the string is a lowercase, unpunctuated, descriptive noun; for
example, "temperature", "engine rpm", or "pressure of T128".
94

Specifying and Generating Explanations
GDA uses this attribute to create explanations for a block that does not have
values for the When True, When False, and When Unknown attributes. For
example, in this model, a temperature of 109 is passed to the High Value block.
When you select current explanation from the High Value block’s menu, GDA
displays the Explanation Queue:

Generating Explanations

GDA can produce explanations for an inference block’s output value by
examining your diagram. GDA uses the When True, When False, and When
Unknown attributes to generate these explanations, and connects those clauses
with the words and, or, and because.

To generate the explanation:

 Select current explanation from the block’s menu.
95

This figure shows how GDA creates a simple explanation that contains clauses
associated with the High Value block and the right-most Condition block:

The first clause (tank is broken) describes the output value of the block. The
second clause (temp is too high) explains the output value. The explanation
contains the descriptions of the blocks that are upstream of the block you are
explaining.

To generate the explanation, GDA searches upstream as far as it can for
Conditions connected to the block being explained. It stops searching when it
reaches the beginning of the inference path: a Condition without an inference
input, a locked Condition, or a Condition with a Local Explanation Restriction.
The block at the beginning of the inference path has the description temp is too
high.

This figure shows a diagram in which a Condition block is locked. GDA creates
the explanation from the locked block and not from the upstream High Value
block. The locked block’s When True description is marked “Locked Manually.”

The next figure shows a more complicated explanation. Three paths lead to the
block whose explanation is being displayed, so the explanation has four clauses:
one clause for the block being explained, and one clause for each block upstream
in the inference path. GDA combines the clauses with the words and and or
because the paths are combined with an AND Gate and an OR Gate. To find out
96

Specifying and Generating Explanations
how GDA produces descriptions for logic gates, see Creating a Description for
Logic Gates.

Generating Explanations for Most Blocks

When GDA needs a description for an Observation, Conclusion, or Entry Point, it
goes through the following sequence until it finds a method it is able to use:

1 Use the description attributes. If the description attribute for the block’s
output value is defined, use that description attribute. The description
attributes are When True, When False, and When Unknown.

2 Use the Input attribute. If the block is from the Observation palette and its
Input attribute (on the Descriptions dialog) is defined, generate an
explanation from that attribute, its threshold or range, and its input value.

For example, if a High Value Observation has an Input of "temperature",
Threshold of 100, and input value of 109, it generates this explanation:

temperature = 109 [threshold = 100]

And if an Out of Range Value Observation has an Input of "level",
Lower Threshold of 50, Upper Threshold of 75, and input value of 47, it
generates this explanation:

level = 47 [range: 50 to 75]

3 Use the block’s name. If the block has a name, generate an explanation of the
form "name is value", where name is the name of the block and value is TRUE,
FALSE, or UNKNOWN.

For example, if a Conclusion is named tank-broken and its output value is
true, it generates this explanation:

TANK-BROKEN is TRUE
97

4 Use the block’s type. Otherwise, generate an explanation of the form "a type is
value", where type is the type of the block and value is TRUE, FALSE, or
UNKNOWN.

For example, if an unnamed Conclusion passes true, it generates this
explanation:

A GDL-CONCLUSION is TRUE

If a block cannot provide an explanation, then GDA uses the clause "unable to
derive an explanation". One case in which this occurs is if a non-Condition
inference block is at the beginning of an inference path.

Creating a Description for Logic Gates

When GDA needs to create an explanation for a Logic Gate, it uses the words and
and or to combine the explanations from the inference paths connected to the
gate.

To generate the explanation:

 Select explanation of last true, explanation of last false, and explanation of last
unknown from the logic gate’s menu.

The following table describes how GDA combines the explanations. The gate’s
explanation does not contain explanations from all attached paths. Also note that
the gate combines the explanations differently depending on the Gate’s output
value.

If this gate... Passes... It joins its... With...

AND or N True true true inputs and

AND or N True false false inputs or

OR true true inputs or

OR false true inputs or

EOR true true input none

EOR false because more
than one input is true

true inputs and

EOR false because no input
is true

false inputs and

AND, N True,
OR, or EOR

unknown unknown inputs and
98

Specifying and Generating Explanations
For example, the following table lists some explanations that the AND-CONC
block could produce:

The following table lists some explanations that the OR-CONC block could
produce:

If I1 is... and I2 is..
.

and I3 is..
.

The explanation is...

true true true AND-CONC is TRUE .because.
(I1 is TRUE .and. I2 is TRUE .and.
I3 is TRUE)

false true false AND-CONC is FALSE .because.
(EP1 is FALSE .or. I2 is FALSE)

unknown unknown true AND-CONC is UNKNOWN .because.
(I2 is UNKNOWN .and. I3 is
UNKNOWN)

If I1 is... and I2 is..
.

and I3 is..
.

The explanation is...

true false true OR-CONC is TRUE .because.
(l1 is TRUE .or. l3 is TRUE

false false false OR-CONC is FALSE .because.
(l1 is FALSE .and. l2 is FALSE .and.
l3 is FALSE)

false unknown unknown OR-CONC is UNKNOWN .because.
(I2 is UNKNOWN .and. I3 is
UNKNOWN)
99

The next table lists some explanations that the EOR-CONC block could produce:

Specifying Fuzzy Logic Attributes
Most GDA inference blocks can use either fuzzy or discrete logic. These sections
describe how to choose which type of logic a block uses, and how to set attributes
that control how blocks convert fuzzy belief values to discrete status values.

Specifying the Type of Logic to Use

Most inference blocks let you choose whether they perform fuzzy or discrete
logic.

To determine whether a block uses discrete or fuzzy logic:

 Specify the Logic attributes as discrete or fuzzy.

In discrete logic, a block passes a Status-value of .true, .false, or unknown and a
Belief-value of 1.0, 0.0, or 0.5, respectively. In fuzzy logic, a block passes a Status-
value of .true, .false, or unknown and a Belief-value, which is a number between 0.
0 and 1.0, where 0.0 is completely false and 1.0 is completely true.

For example, suppose the output value of an Entry Point tells you how true this
statement is: It is raining outside. The following table lists the possible belief and

If I1 is... and I2 is..
.

and I3 is..
.

The explanation is...

true false true EOR-CONC is FALSE .because.
(I1 is TRUE .and. I3 is TRUE)

false false false EOR-CONC is FALSE .because.
(I1 is FALSE .and. I2 is FALSE .
and. I3 is FALSE)

true false false EOR-CONC is TRUE .because.
I1 is TRUE

false unknown unknown OR-CONC is UNKNOWN .because.
(I2 is UNKNOWN .and. I3 is
UNKNOWN)
100

Specifying Fuzzy Logic Attributes
status values for the Entry Point and what they mean. Note that the belief value
gives you more information than the status value. When the status value is .true,
there could be a gentle rain or a downpour. But the belief value assigns 0.75 to a
gentle rain and 1.0 to a downpour.

All inference blocks pass a status value and a belief value, regardless of the value
of the attribute Logic. The block computes its belief value then chooses the
appropriate status value.

• If Logic is discrete, the belief value is either 0.0, 0.5, or 1.0. The block assigns
the status value .true to 1.0, unknown to 0.5, and .false to 0.0.

• If Logic is fuzzy, the belief value can be any number from 0.0 to 1.0. The block
uses the attribute Output Uncertainty, described in Specifying Uncertainty, to
decide the status value.

You can use two-stage logic in GDA. Generally, GDA uses three-stage logic: a
block can pass .true, .false, or unknown. However, if a block has Logic set to
discrete and Output Uncertainty set to none, the block passes .true or .false only,
and not unknown. It assigns .false to the belief value 0.5.

Specifying Uncertainty

An inference block computes a belief value from 0.0 to 1.0 and then uses that
value to compute its status value (.true, .false, or unknown). You can specify an
uncertainty to determine the range of belief values that result in each status value.

To determine where to put the boundaries between the status values:

 Set the attribute Output Uncertainty, which defines a band around 0.5 that
will have the status value unknown.

For example, in the first figure, Output Uncertainty is 0.25:

If the Belief-value is… And the Status-value is… The weather is…

0.0 .false Sunny

0.25 .false Cloudy

0.5 unknown Drizzling

0.75 .true Raining

1.0 .true Downpour

0.3750.250.1250.0 1.00.8750.750.625

unknown

0.5

.false .true
101

If you set Output Uncertainty to 0.0, a Belief-value of 0.5 is associated with a
Status-value of unknown, as shown in this figure:

To prevent the block from passing the value unknown:

 Set Output Uncertainty to none.

A Belief-value greater than or equal to 0.5 corresponds to a Status-value of true,
and a Belief-value less than 0.5 corresponds to a Status-value of false, as this
figure shows:

Specifying Hysteresis

A Condition block can filter out minor changes in its status value. If a block
frequently changes to unknown from true or false, you can have the block ignore
that change. The block instead continues to pass the previous value. Ignoring
small changes like these is called hysteresis.

For example, suppose you are using hysteresis with a block that has an Output
Uncertainty of 0.5. If the block’s belief value changes from 0.8 (true) to 0.7
(unknown), it continues to pass .true. If the block’s belief value changes from 0.1
(false) to 0.6 (unknown), it will continue to pass .false.

To specify when the block performs hysteresis:

 Set the attribute Hysteresis When to one of the values in the following table:

0.3750.250.1250.0 1.00.8750.750.625
0.5

.false .true

unknown

0.3750.250.1250.0 1.00.8750.750.625
0.5

.false .true

If Hysteresis When is…
The block performs hysteresis
when its value changes to unknown from…

.true .true

.false .false

always .true or .false

none never
102

Specifying Fuzzy Logic Attributes
Note Only Condition blocks can perform hysteresis. The Condition blocks are on the
Observations palette and the Conditions palette.

The following figure graphs the belief values of a block that has Hysteresis When
set to .true. The corresponding status values are near each belief value. When the
belief value goes from the true range to the unknown range, the block continues
to pass .true. When the belief value goes from the false range to the unknown
range, the block passes unknown.

Note that when the block has the belief value near the arrow, the block passes true
although the value is under 0.5. Even if the belief value is closer to the .false range
than the .true range, the block passes .true whenever the block’s belief value goes
from .true to unknown.

The next figure graphs the belief values of a block that has Hysteresis When set to
always. The corresponding status values are near each belief value. When the
belief value goes from the true range to the unknown range, the block continues
to pass .true. When the belief value goes from the false range to the unknown
range, the block continues to pass .false.

0.0

1.0

0.5

.true

.true

.true

.true

unknown

.false

unknown

.false
unknown

0.0

1.0

0.5

.true

.true

.true

.true

.false

.false

.false

.false

.false
103

Using Variables and Parameters
You use variables in a diagram to:

• Receive data from or send data to external data sources using G2 Gateway
(GSI) or other bridges.

• Specify the validity interval for a value on a path, which determines when the
value expires.

In addition, you can use variables or parameters to initiate forward chaining.
Thus, use a variable when you need to connect to external data or use expiration
times; otherwise, use a parameter.

Choosing the Type of Variable or Parameter

There are a number of variable and parameter types available. Choose the type
that is most specific for the type of data being passed.

The following table describes the various types of variables and parameters:

A variable or
parameter of type... Passes data in the form of...

Logical true or false

Quantitative Floating point number, e.g., 1.2, or integer, e.
g., 1

Float Floating point number, e.g., 1.2

Integer Integer, e.g., 1

Symbolic Symbols, e.g., .true, .false, or unknown, high
or low, or any class name when connected to
an item path

Text Text strings, e.g., “warning”

Sensor (variables only) GSI sensor data
104

Using Variables and Parameters
Creating a Variable or Parameter

To create a variable or parameter:

 Select KB Workspace > New Object > g2-variable or parameter, then choose
the desired type:

Using Variables to Connect to External Data

You can use variables to connect to external data when you use G2 Gateway
(GSI), either to obtain data from an external source or send data to an external
process. See the G2 Gateway Bridge Developer? Guide for information about G2
Gateway.

To identify the external data source or target:

 Specify one of the following values for Data-server in the variable’s table:

• Inference engine

• G2

• GSI data server

• Any data server alias

See the G2 Reference Manual for a discussion of the various types of data servers.

Variables

Logical Float Integer Symbolic TextQuantitative

Parameters
105

The following figure illustrates a logical variable and its table:

Note When you set the Data-server attribute to inference engine for a variable, GDA
uses the G2 conclude action to change values locally within GDA. When you set
the Data-server attribute to anything other than inference engine, however, GDA
uses the G2 set action to set the value in the external system.

Creating a Sensor

Sensors are a particular kind of variable that obtains or passes quantitative values
from or to external data sources; sensors do not allow the specification of a
formula.

To create a sensor:

1 Select KB Workspace > New Definition > class-definition > object-definition to
create a new class of object.

2 In the new class’s table, specify the Direct-superior-classes as sensor.

Specify the
data server.
106

Using Variables and Parameters
3 Specify the Name of the new class. Close the table.

4 Select create instance from the new class’s menu to create an instance of the
class. Specify the Name of the new instance.

5 Specify the Data-server for the sensor in the new object’s table.

This figure illustrates the sensor class, a sensor instance, and the default table:

Connecting a Variable or Parameter to a Block

To connect a variable or parameter to a block:

 Drag a connection stub from the block into the variable or parameter, and
click inside the icon to make the connection.

This connection establishes the link between the variable or parameter and the
diagram.
107

Note Be sure to select Controls > Enable Data Input to enable data to flow into the
diagram.

You can connect variables and parameters to the input path of any block, for
example, to feed external data into a diagram:

You can also connect variables and parameters to the output path of any block, for
example, to send data to an external process or to initiate forward chaining:

Caution In general, do not create a variable or parameter that both receives data from an
input path and sets data onto an output path, because GDA cannot guarantee the
order of execution of the variable or parameter relative to other blocks.

Overriding Values of Variables and Parameters

Any variable or parameter connected at the input end of a data, inference, or
control path contains two additional menu choices:

• override

• lock or unlock

To manually override a variable or parameter:

 Use the override menu choice.

You use this feature to manually feed values into the diagram for testing
purposes. For information on the various types of override dialogs that can
appear, see Coercing Data Using Variables and Parameters as Input.

Manually overriding the value of a variable or parameter automatically locks the
object, which displays a lock icon associated with the object. A locked object
prevents the propagation of values obtained from any data source other than
manual. For example, if a rule or procedure concludes a value into a locked
108

Using Variables and Parameters
variable, or if an external data source passes a new value into the variable, the
variable receives the value but does not propagate it onto the path. Manually
overriding the value of a locked variable or parameter does propagate the value.

A locked object contains unlock in its menu; an unlocked object contains lock in its
menu.

To unlock a locked object:

 Select unlock from the object’s menu, or delete the lock icon by selecting delete
from the icon’s menu.

The following figure illustrates a simple diagram containing a float variable
connected to a High Value observation block via a data path. The variable is
locked because the user selected override from the menu.

Coercing Data Using Variables and Parameters as
Input

When using variables and parameters to set values onto a path, the override
dialog and the resulting value that appears on the output path depend on two
things:

• The type of variable or parameter.

• The type of path to which the variable or parameter is connected.

In the simplest case, the value on the path corresponds to the value stored by the
variable or parameter to which it is connected. In the example above, the float
variable contains a floating point number, which corresponds to the data type
passed by the path to which it is connected. Thus, GDA presents the user with a
Type-in override dialog for entering a new floating point value.

You can also connect variables and parameters to connection paths where the
data types do not correspond. For example, you can connect a float variable to an
inference path, which converts the float value to a status and belief value.

Caution Do not connect more than one output path to a variable or parameter, otherwise
the results will be unpredictable.

The following chart summarizes the data coercion that takes place when you use
the various types of variables and parameters as input to the four output path
types. The cells indicate the type of override dialog that appears and the value on
the output path. The shaded cells indicate combinations that do not have
109

meaning. See Examples of Data Coercion Using Variables and Parameters as
Input for examples of the various types of override dialogs.

T y p e
O u t p u t

Data Path Inference Path Control Path Item Path

Logical T/ F Radio
Button

Discrete belief
value (0.0 and 1.0
only)

Output control
signal

Control signal

Float or
Sensor

Type-in

Floating point
data value

Belief Slider

Fuzzy belief
value

Output control
signal

Control signal
Integer Type-in

Integer data
value

Belief Slider
(0 or 1 only)

Discrete belief
value (0.0 and 1.0
only)

Output control
signal

Control signal

Symbolic Type-in

Symbolic data
value

T/ F/U Radio
Button

Discrete belief
value (0.0, 0.5, or
1.0)

Output control
signal

Control signal

Type-in

Class or item
name

Text Type-in

Textual data
value

Output control
signal

Control signal
110

Using Variables and Parameters
Examples of Data Coercion Using Variables and Parameters as Input

The following figure illustrates two quantitative parameters connected to a data
path using a Summation block. The figure shows the Type-in override dialog for
one of the parameters and the table for one of the data paths.

This figure illustrates two logical variables connected to inference paths using an
And gate. The figure shows the T/F Radio Button override dialog for one of the
variables and the table for one of the inference paths.

override

table

override

table
111

The next figure illustrates a float variable connected to an inference path using a
Not gate. The figure shows the Belief Slider override dialog for the variable and
the table for the inference path.

Note For an integer variable or parameter connected to an inference path, the Belief
Slider only accepts values of 0 or 1.

This figure illustrates a symbolic variable connected to an inference path using a
Not gate. The figure shows the T/F/U Radio Button override dialog for the
variable and the table for the inference path.

table

override

override

table
112

Using Variables and Parameters
The next figure illustrates a float variable connected to a control path using a
Control Counter block. The figure shows the output control signal dialog for the
variable.

For an example of connecting a symbolic variable to an item path, see Placing an
Item Onto an Item Path Interactively.

Coercing Data Using Variables and Parameters as
Output

GDA also coerces data passed into a variable or parameter from a path. The
following chart summarizes the data coercion that takes place when you use the
various types of variables and parameters as output from the four input path
types. The cells indicate the value stored in the variable or parameter based on the
input value. The shaded cells indicate combinations that do not have meaning.
See Examples of Data Coercion Using Variables and Parameters as Output for
examples.

override
113

I n p u t
T y p e

Logical Float Integer Symbolic Text

Data Path false when
Data-value
< 0.5; true
when Data-
value 0.5

Floating
point
Data-value

Data-value
rounded to
the nearest
integer

Symbolic
Data-value
(a quantity
gives an
error)

Textual Data-
value

Inference
Path

true or false
(unknown is
ignored)

Belief-value Discrete
integer
Belief-value
(0 and 1
only,
rounded to
nearest)

Symbolic
Status-value
(.true, .false,
or unknown)

Textual symbolic
Status-value (“.
TRUE,” “.
FALSE,” or
“UNKNOWN”)

Control
Path

Adds 1.0 to
Last-
recorded-
value

Adds 1 to
Last-
recorded-
value

Item Path Class or item
name of path
item
114

Using Variables and Parameters
Examples of Data Coercion Using Variables and Parameters as
Output

The following figure shows a Numeric Entry Point connected to a logical variable.
The figure shows the Type-in override dialog for the Numeric Entry Point and the
table for the logical variable.

override
115

The next figure shows a Belief Entry Point connected to a float variable. The figure
shows the T/F/U override dialog for the Belief Entry Point and the table for the
float variable.

override
116

Evaluating Expressions in Attributes
Evaluating Expressions in Attributes
In several blocks, you can set an attribute to an expression that the block will
evaluate later. You must enclose the expression to evaluate in brackets and quotes
("[expression]"). For example, you could set the Name of Sensor attribute of an
Entry Point to "[the temp of tank1]", where tank1 is an object with the variable or
parameter attribute temp. Or you could set the When True attribute of a High
Value block to "The temperature is over [threshold]" which the block may evaluate
to "The temperature is over 100".

This section lists the attributes that contain expressions, describes the type of
expressions they may contain, and shows examples of some diagrams that use
this feature.

Note If you use expressions in attributes, GDA evaluates the expression at run-time
each time the block evaluates, which degrades performance.

These attributes can contain an expression that evaluates to a string:

• When True, When False, When Unknown in the Observation and Conclusion
blocks.

• Option 1 Description, Option 2 Description, and Option 3 Description in the
User Query Control Switches on the Control Action blocks.

• Advice in the Alarm and Recurring Alarm Capabilities.

• Override Text and New Value Prompt in the Dialog Restriction and Manual
Override Restriction.

These attributes can contain an expression that evaluates to a G2 variable or
parameter, such as "[the volume of mixing-tank-3]":

• Name of Sensor attribute for a Numeric Entry Point, Text Entry Point,
Symbolic Entry Point, Belief Entry Point, or Control Entry Point.

• Target Variable in the Data Output block.

• External Datasource in Residual.

• Expected Value in Standard CUSUM, Two-Sided CUSUM, EWMA, and
SPC Run.

This attribute can contain an expression that evaluates to a symbol that names a
graph or chart:

Chart Name in the Chart capability.

This attribute can contain an expression that returns a truth value:

Exit If in the Control Path Loop.
117

This attribute can contain an expression that evaluates to a GDA object:

Target in the Highlight block.

Note In the values of these attributes, include brackets only if the brackets are enclosing
an expression. Any other use of brackets could cause an error.

You cannot include any arbitrary G2 expression in these G2 attributes. The table
below lists the bracketed expressions that attributes can contain:

Note that object-name can be the name of any named G2 object, and attr-name can
be any user-defined attribute or the system attribute name. The syntax for
g2-expression, g2-function, and g2-procedure is discussed in the sections below.

This expression… Is… And is replaced by…

[object-name] The name of a G2
variable or parameter.

The value of the G2
variable or
parameter.

[attr-name] An attribute in this
block.

The value of the
attribute.

[the attr-name of
object-name]

An attribute in the
named object.

The value of the
attribute.

[the attr-name of the
superior object]

An attribute in the
object that owns the
subworkspace that
contains this block.

The value of the
attribute.

[the superior object] The object that owns
the subworkspace that
contains this block.

The object.

[(g2-expression)] Any G2 expression you
can use in a G2
formula.

The value of the
expression.

[(call function
g2-function)]

A call of a G2 function. The value of the
function.

[(call procedure
g2-procedure)]

A call of a G2
procedure.

The return value of
the procedure.
118

Evaluating Expressions in Attributes
Using a G2 Expression

When you use a string of the form "[(g2-expression)]", you can use many G2
expressions in the attribute. GDA evaluates the expression and replaces it with
the value returned.

To refer to the block that contains the attribute, your expression can use the term
the item. For example, if you are setting the Description When True attribute of a
High Value block, the string can contain "The value is over [(the threshold of the
item * 2)]".

Note You must enter the expression the item with a single space between the two
words. If it contains a tab, line feed, or more than one space, GDA will not
recognize it.

When you run your application in a run-time or restricted use G2, you cannot use
a string of the form "[(g2-expression])". Instead, create a new function or procedure
that contains that expression and use a string of the form
"[(call function g2-function)]" or "[(call procedure g2-procedure)]".

Using a G2 Function or Procedure

With a string of the form "[(call function g2-function)]" or "[(call procedure
g2-procedure)]", you can call any function or procedure from the attribute. Unlike
using a G2 expression, you can call a function or procedure when your
application is running in a run-time or restricted use G2.

The function or procedure must take one argument which will be the block that
contains the attribute, and must return either a string or a variable or parameter,
depending on what attribute it is used with.

This is the format for a function:

function-name (var-name) = (. . . .)

This is the format for a procedure:

procedure-name (blk: class gdl-block) = (item-or-value)
begin

. . .
return expression;

end
119

Examples

The picture below shows an Entry Point that uses an expression for the Name of
Sensor. The expression refers to the volume of Tank-1, which is an attribute that is
given by a variable class. The Data Source is external. The output data value for
the entry point corresponds to the current value of the volume of the tank.

The following picture shows two tank objects with subworkspaces. Although the
subworkspaces are identical, you can use indirect references to make sure the
blocks on the subworkspaces refer to the appropriate tank. On each
subworkspace is a GDA diagram that reads the temperature and volume from the
tank and tests whether those numbers fall within certain limits. If they are outside
120

Evaluating Expressions in Attributes
the limits, the diagram highlights the tank object. Otherwise, the diagram resets
the object.

The picture below shows a diagrams with several blocks that use text
concatenation. The Description When True attribute appears under each
Observation block. The Entry Point TEMP-EP gets its value from the G2 variable
TEMP-VAR. TEMP-EP passes that value to several Observation blocks and one
121

Encapsulation block named TEST1. The Encapsulation block has one
Observation block on its subworkspace.

This table shows how the blocks could expand their descriptions:

This description… Could expand into this…

"the temperature is over [threshold]
degrees"

"the temperature is over
100 degrees"

"the temperature [the dp-out of temp-ep]
equals the limit."

"the temperature 90 equals
the limit"

"the temperature [temp-var] is under the
limit"

"the temperature 80 is
under the limit"

"the input of [the name of the superior
object] is [threshold]"

"the input of test1 is 70"
122

Using the GXL Spreadsheet to Edit Data
Using the GXL Spreadsheet to Edit Data
Many blocks that operate on vectors, Data Pairs, and Data Sets let you edit data
by using a GXL spreadsheet. GXL (Gensym Spreadsheet System) is a G2 module
that provides spreadsheet editing capabilities for editing vector and data set
blocks.

This spreadsheet is for editing a Data Set block with ten samples, five inputs, and
three outputs:

The spreadsheet displays eight rows and three columns of data. If there is more
data than will fit, vertical and horizontal scroll bars appear in the spreadsheet.

"the input is [(if the data-value of the
gdl-path

connected at the input of the item < 75
then @"under 75@"
else @"over 100@")]"

"the input is over 100"

"the input is [(call procedure myproc)]" "the input is under 25"

This description… Could expand into this…
123

To enter a value in the spreadsheet:

 Click on the cell you want to edit, enter a number or click in the formula bar to
enter a formula, and press Return to move to the next cell in the spreadsheet.

You can read and write data from and to a file, for individual cells, rows, or the
entire spreadsheet. You can add and delete rows and columns, cut and paste cell
values, and sort rows.

The toolbar buttons are, from left to right:

Toolbar Button Function

Save Saves the current selection to a file.

Load Loads data from a file into the selected area.

Add row before Inserts an empty row before the currently selected row.

Add row after Inserts an empty row after the currently selected row.

Delete row Deletes the selected rows.

Add column before Inserts an empty column before the currently selected
column.

Add column after Inserts an empty column after the currently selected
column.

Delete column Deletes the selected columns.

Change color Sets the text, background and border color of selected
cells.

Cut Transfers the current selection to the clipboard.

Copy Copies the contents of the selected cells to the clipboard.

Paste Copies the contents of the clipboard into the selected
cells.

Undo Reverses the last operation.

Sort ascending Sorts the rows of the selection in ascending order
according to the contents of a key column.

Sort descending Sorts the rows of the selection in descending order
according to the contents of a key column.
124

Understanding the GDA Block Evaluation Engine
Once you have edited the spreadsheet, select OK to save the changes and close the
spreadsheet. To close the spreadsheet and discard the changes you made, select
Cancel.

For more information on using GXL spreadsheets, see the G2 XL Spreadsheet User?
Guide.

Understanding the GDA Block Evaluation
Engine

GDA operates using an efficient block evaluation engine. Although distinct from
the G2 scheduler, it operates in a similar way in that blocks are scheduled for
evaluation, then executed within the GDA engine.

When a block requires evaluation, GDA “invokes” the block, flagging the block
for later execution, accomplished during the next GDA cycle through your
application.

To understand how blocks in a diagram evaluate, you need to understand:

• How GDA invokes an individual block.

• The cycling of the GDA Engine, by which GDA evaluates invoked blocks.

• The evaluation of blocks on an individual workspace.

Invoking an Individual Block

GDA invokes a block when:

• An entry point receives a value from its data source.

• A value is propagated onto the input path of the block due to the behavior of
an upstream block.

• You evaluate a block manually.

• A variable or parameter connected to a diagram receives a value.

• A programmatic call to gdl-evaluate-block occurs.

If a block that is located on the subworkspace of an encapsulation is invoked,
GDA invokes that encapsulation block, and any superior encapsulations. The
invocations propagate upwards through the workspace hierarchy to the top-most
diagram that contains the encapsulation blocks.

When an upstream block propagates an inference value, GDA performs what is
referred to as inference path filtering. This means a new input inference path
does not invoke a downstream block if the belief value has not changed.
125

Normally when a block is invoked, the block is evaluated as part of the evaluation
of the workspace. If a block is invoked outside the normal evaluation of
workspaces, then that block has to be picked up by a sweep, and scheduled for
evaluation. The evaluation of the blocks occurs asynchronously with the
invocation of the blocks.

Executing Diagrams

GDA executes an application by searching, workspace by workspace, for invoked
blocks. It does this in a periodic fashion, executing all the blocks on each
workspace and continuing until there are no more blocks left to evaluate.

While iterating through each workspace, GDA performs three distinct types of
searches:

• Manual invocations - invocations in response to a manual evaluation or an
override.

• Entry point invocations - sweeps that propagate new data obtained by entry
points.

• System invocations - all other block invocations.

For each type of sweep, GDA follows certain rules to check blocks for invocations
and evaluate these blocks.

Executing Blocks that Have Been Manually Evaluated

When you evaluate a block manually by using either the evaluate or override
menu choice, the block is executed separately from system-evaluated blocks.
Manual invocations are never mixed with other types of invocations, because
each manual invocation is associated with a specific client (for example a G2
window or Telewindows2 window).

Invocations resulting from manual overrides are grouped according to their
client, and all evaluations associated with that client are resolved before moving
on to the next client (if any).

Executing Blocks that Have Been Launched by the System

After all manual evaluations have occurred, GDA finds all blocks that have been
evaluated programmatically. GDA obtains all blocks that have been invoked
since the last cycle, and then evaluates them on a workspace-by-workspace basis.
Note that individual workspaces are evaluated all at once (as described in the
Workspace Evaluation section). GDA continues processing all blocks, including
blocks that are invoked by other workspace evaluation within the same cycle,
until no more invocations remain. Thus, if a block is invoked during an
evaluation cycle, GDA evaluates the block within the current cycle. If a block is
invoked outside of a cycle, GDA evaluates the block in the next cycle.
126

Understanding the GDA Block Evaluation Engine
Once all blocks have been evaluated, GDA determines whether it is time to
evaluate entry points. GDA determines whether the appropriate Sweep Interval
has passed since the last sweeping of entry points. If a sweep interval is
warranted, GDA proceeds on to Sweeping Diagrams with Entry Points (see the
next section). If it is not time for an entry point sweep and there are no remaining
blocks to evaluate, GDA allows time for other tasks.

GDA performs other tasks in this order. First, GDA enters a wait state to allow G2
to process any non-GDA tasks that may be waiting. The GDL Engine determines
the length of this wait. The GDL Engine scheduling-granularity attribute is the
length of this wait in seconds. The default scheduling granularity of GDA is 0.1
seconds. The user can increase this value in an attempt to shift G2 resources away
to non-GDA tasks. Because the G2 scheduler operates in .05 second intervals,
making this value shorter has little meaning.

GDA also takes the time between evaluation cycles to perform other tasks, such as
turning animation on and off, updating chart displays, and recompiling
workspaces. This third task is explained in greater detail in Evaluating Blocks on
Individual Workspaces.

At this point, GDA starts again with another manual evaluation cycle.

Sweeping Diagrams with Entry Points

An entry point sweep occurs when GDA evaluates all invoked entry points and
propagates the entry point's current value. If the entry point receives several
values between sweeps, only the last value that the entry point receives is passed
downstream.

An entry point sweep only occurs if the appropriate Sweep Interval has passed.
You can control the frequency of entry point sweeps in the Environment Settings
under the Preferences menu. By default, entry point sweeps happen once every
second. The next section explains how to change the interval.

Setting the Sweep Interval

You can set the interval at which GDA sweeps the entry points in your diagram.
By default, the interval is 1 second, which is the lowest recommended value.

To process entry point data in a diagram using a different sweep interval:

1 Select the Preferences > Settings > Environment menu choice to display the
Environment Settings dialog.

2 Set Sweep Interval, then press OK.
127

Evaluating Blocks on Individual Workspaces

To understand the order of evaluation of blocks on an individual workspace, you
can think of each block on a workspace as having a number, which is the order in
which GDA checks for invocations on the workspace.

• If the blocks on a workspace contain no feedback loops, GDA searches for
blocks in a depth-first order, ignoring all connection posts, except those that
connect to connection posts on the same workspace. For a detailed description
of depth-first ordering, see Introduction to Algorithms, T.H. Cormen, C. E.
Leiserson, R.L. Rivest, McGraw-Hill, 1990.

• If a block branches to one of multiple output paths along multiple parallel
lines, GDA arbitrarily chooses one path and continues numbering
sequentially in a depth-first manner until it has ordered all blocks along the
path. GDA then backs up to the block with a decision point and picks up the
sequential numbering of blocks along the other path(s).

• If a diagram contains blocks with multiple input paths, in general, the block
with multiple inputs is always evaluated after all of its input blocks evaluate,
and any of its inputs can cause the block to evaluate. This means that, in
general, blocks with multiple inputs only evaluate once per evaluation of a
given workspace. The exception is blocks that have their multiple-invocations
attribute set to Queue or OK, in which case the block can evaluate more than
once per cycle.

The result is a list in which all upstream blocks have a lower number than all
downstream blocks, including blocks with multiple input paths. Numbering
starts at zero at a block that has no upstream blocks and continues sequentially
until every block on the workspace has been numbered. If a diagram contains
multiple blocks not connected to upstream blocks, GDA arbitrarily chooses one of
these blocks as a starting point.

Capabilities and Restrictions are always numbered sequentially directly after the
blocks to which they are attached, so they always evaluate immediately after the
block to which they are attached.

This diagram shows how GDA numbers blocks on a simple diagram with two
parallel paths in a depth-first order:

HF

EDCBA

G

A, B, C, D, E, F, G, H

A, B, C, F, G, H, D, E

or

Depth-first ordering
of blocks on a workspace.
128

Understanding the GDA Block Evaluation Engine
This diagram shows how GDA numbers blocks on a diagram that contains a
block with multiple inputs, in this example, block D:

Inside of feedback loops, no upstream/downstream relationships exist; thus
feedback loops are numbered in two steps.

1 First, the blocks in the loop are numbered via a depth-first search, according
to the explanation above.

2 Next, GDA backs up to the block that begins the loop and "promotes" the
blocks in the loop so that they appear consecutively in the list, without
changing their relative order.

In this way, the loop processes until it is finished before the downstream blocks
evaluate. When a diagram contains nested loops, the same "promotion" process
assures that the inner loop finishes evaluating before each evaluation of the outer
loop.

This diagram shows how GDA numbers blocks on a diagram with a loop:

The process of ordering the blocks in the diagram is referred to as a compilation
of a workspace. As described previously, the recompilation of workspaces occurs
in between evaluation cycles. Further, a workspace is only recompiled if it has
been tagged as “invalid.” Workspace invalidation occurs whenever the user adds
a block to a workspace, removes a block from a workspace, clones an existing
block, or makes or breaks a connection between blocks. A workspace can also be
invalidated programmatically, which is necessary if the diagram has been
programmatically modified.

Once the order of blocks has been determined, an individual workspace always
executes the blocks in that order. When blocks evaluate, an “evaluation pointer”
advances from block to block, following the serial numbering of blocks in
ascending order. If the pointer arrives at an invoked block, the block evaluates. If
the pointer arrives at a block that has not been invoked, the pointer moves to the

F

EDCBA

G

A, B, C, F, G, D, E

Depth-first ordering of
blocks with multiple inputs.

F

EDCBA

G
A, B, C, D, E, G, F

A, B, C, D, G, F, E

Step 1. (depth-first)

Step 2. (promotion)

Depth-first ordering
of blocks with a loop.
129

next block. The only time the pointer moves back in the series is when there is a
path from a higher numbered block to a lower numbered block, at which point
evaluation returns to the lower numbered block only if it has a pending
invocation. Evaluation then continues from the lower numbered block.
Evaluation on the workspace ends when the evaluation pointer reaches the last
block in the list.

If a workspace contains an encapsulation block, GDA evaluates all the blocks on
its subworkspace. When GDA has completely evaluated the blocks on the
subworkspace, evaluation returns to the superior workspace.

Asynchronous blocks, such as the Delay block, do not hold up evaluation. When
these types of blocks begin evaluation, the evaluation pointer moves directly to
the next block. When the delay is finished, a new evaluation sweep begins.

For more information on asynchronous block evaluation, see Multiple
Invocations
130

3

Using GDA Queues
Describes how to use the queues feature.

Introduction 131

Summary of the Queue Features 132

Using the Alarm Queue 134

Using the Error Queue 162

Using the Explanation Queue 163

Using the Message Queue 164

Sending Messages to Queues Using the Queue Message Block 165

Introduction
The GDA Queue system allows users to display important information about a
GDA application and to communicate with each other within a G2 process or on
remote G2 processes. A queue is a temporary, dynamic repository for messages.
The messages posted to queues are called entries. Entries contain the text of the
message and other relevant data, such as the creation time, and for alarm entries,
severity and acknowledgement status.

GDA provides four basic queues that support these types of activities:

• The Alarm Queue holds entries generated by alarms.

• The Error Queue receives error messages that result while running GDA
applications.
131

• The Explanation Queue holds explanations generated by inference blocks or
Explanation Memory blocks.

• The Message Queue enables the sending and receiving of messages between
users.

This chapter describes how the end user interacts with the queues. The following
chapters describe configuring the queues:

• Creating and Configuring Queues

• Creating Queue Views

For information about programming queues, see the GDA API Reference.

Summary of the Queue Features
This figure shows a view of an Alarm Queue with a selected entry. The figure
contains labels for useful parts of the queue view:

View entry counter

Severity

Message text (* indicates
that entries are sorted on this
column’s contents) Acknowledgement statusTimestamp

Queue entryToolbar buttonsQueue label
132

Summary of the Queue Features
The features of the Error Queue, Explanation Queue, and Message Queue are
similar to the Alarm Queue except:

• The queue label indicates the type of queue.

• These queues do not include the Severity (Sv) and Acknowledged (Ack)
columns.

• These queues do not include the buttons associated with acknowledging
alarms and locking the view.

• The column header for the message text (“Alarm Message” for the Alarm
Queue) varies according to the type of queue.

This table provides a summary of each toolbar button available on the Alarm
Queue. You can view a tool tip for a button by holding the mouse button down
over a button.

Queue Button Button Name Description

Select Filters Enables users to define filters and select filters
to activate. Filtering displays queue entries
based on specified criteria. See Filtering
Queue Entries.

Apply Filters Applies the currently selected filter or filters
to the queue entries. See Filtering Queue
Entries.

Sort Entries Reverses the order in which the entries are
sorted. See Sorting Entries.

Send Entries Sends the selected entries to another queue.
See Sending Entries to Another Queue.

View Details Displays details about the selected entry. See
Viewing the Details of an Entry.

Go to Source Displays the workspace containing the source
of the entry and places an arrow next to the
source. See Showing the Source of an Entry.

Acknowledge Acknowledges the selected entry. This button
is only available on the Alarm Queue. See
Acknowledging Alarms.
133

Using the Alarm Queue
Although the queues have similar features, the Alarm Queue provides more
options than the other queues. This section discusses in detail all the features the
Alarm Queue supports. Because many of these features are supported by other
queue types, this section contains useful information for other queue types.

Filtering Queue Entries

By default, when an entry is generated it appears on the queue view. You can
limit the entries that appear on the queue view by using filters. For example, you
might want to filter alarm entries based on their severity, displaying only Severity
1 alarms. You can also use filtering to limit the number of alarms generated at
startup.

The filter criteria determine which queue entries should appear on a queue view.
The entries that do not meet the criteria are hidden; they do not appear on the
queue view, although they exist in the queue.

To filter queue entries, you must:

• Define the filter(s)

• Apply the filter(s)

Save Entry Writes the message text associated with the
selected entry to a file. See Saving a Queue
Entry.

Remove Entries Removes the selected entries from the queue.
See Removing Entries from the Queue View.

Lock View Prevents the queue from displaying new
entries. This button is only available on the
Alarm Queue. See Locking the Alarm Queue
View.

Clear View Removes all the visible entries from the
queue. On the Alarm Queue, also
acknowledges the entries. See Removing
Entries from the Queue View.

Queue Button Button Name Description
134

Using the Alarm Queue
Permanent and Temporary Filters

You can create temporary filters that work for the duration of your GDA session,
or you can create permanent filters that can be used during any GDA session. You
can make temporary filters permanent.

Creating a Permanent Filter

This section describes how to create a filter object that you can save, then reuse
during any GDA session.

To create a permanent filter:

1 In Administrator mode, choose Main Menu > Get Workspace > GQMV-TOP-LEVEL
to display the top-level workspace associated with the GQM Views module:
135

2 Click the GQM Views Palette button to display this palette:

3 Click the Attribute Filter item to attach it to the cursor, then click to place it on
a workspace in your application.

4 Display the table for the attribute filter and edit these attributes:

Attribute Description

Names The name of the filter. When you apply a filter to a
queue, you select this name in a list on the Select
Filter dialog box.

Attribute-
name

The name of the queue entry attribute whose value
determines whether the entry appears in the queue
view. For the list of available attribute names, see
Entry Attributes Used with Filters.
136

Using the Alarm Queue
For example, a filter named permanent-severity-filter filters alarm entries
based on the gda-severity attribute being equal to 1. All queue entries whose
gda-severity value is 1 appear on the view. The filter table looks like this:

Entry Attributes Used with Filters

This section contains two tables: the first lists attributes of queue entries
supported by all queues; the second lists those attributes supported by the Alarm
Queue.

Caution Do not use attributes whose names start with an underscore. These attributes are
reserved for internal use and can be changed without notice.

Test The relational operator to apply to test the value of
the Attribute-name value against the Target-value.
The operators are: equals, does-not-equal, contains,
does-not-contain, greater-than, greater-than-or-equal-
to, less-than, less-than-or-equal-to, exists, and does-
not-exist.

Target-value The value to compare to the value of the Attribute-
name attribute, using the relational operator
specified in Test. The value cannot be an expression.

Attribute Description
137

All queue entries define these attributes:

Alarm Queue entries define these additional attributes:

Queue Entry Attribute Description

Gqm-comments The text of the comments associated with the
queue entry, as a text-array. This attribute
cannot be used in filters.

Gqm-message-text The text of the queue entry, specified as a text.
For Alarm Queue and Explanation Queue
entries, GDA generates the message text
based on the class name and output path
value of the block to which an Alarm
Capability or Queue Message block is
attached. For Message Queue entries, the
message text is generated based on the Entry
Text attribute of the Queue Message block.

For example, you can filter entries based on
the message text: "gdl-high-value-
observation".

Gqm-creation-time The time when the queue entry was created,
specified as a float. The date is stored as the
number of seconds since G2 started.

Gqm-priority This attribute is not used by GDA. You can
use it as a basis for filtering entries. Its value is
specified as an integer.

Attribute Description

Gda-require-
acknowledgement

The value of the Require Acknowledgement
attribute of the Alarm Capability that
generates the alarm. The value can be true or
false.

Acknowledged Whether or not the alarm has been
acknowledged. The value can be true or false.

S-acknowledge-time The time when the alarm was acknowledged,
specified as a float. See Gqm-creation-time in
the previous table.
138

Using the Alarm Queue
You can subclass queue entry classes to add or modify entry attributes, then use
these attributes in filters. For more information about subclassing queue entries,
see the GDA API Reference.

Creating a Temporary Filter

You can create one or more filters and apply each individually or combine them
by using logical operators. A filter is based on the attributes of the queue entry.

To define a filter:

1 On the queue view, click the Select Filter button to display this dialog:

Gda-severity The value of the Severity attribute of the
Alarm Capability that generates the alarm, as
an integer.

Gdl-filter-tag This attribute is not used by GDA. It is
provided specifically as an attribute for
filtering. Its value is specified as a symbol.

Attribute Description
139

2 Click the New filter button to display the Define New Filter dialog:

3 Enter a symbol for the Filter name, for example, unacknowledged-alarms, and
press Enter. You use this name later when you apply filters. The filter name
can be any length, although only 25 characters are displayed on the Select
Filter dialog.

4 In the Attribute or Filter field, enter the name of a queue entry attribute,
depending on the criteria you want to use.

For example, to filter Alarm Queue entries based on their acknowledgement
status, enter acknowledged.

Caution Be sure to press the Enter key after entering the value; otherwise, the value
does not get set.
140

Using the Alarm Queue
5 Click in the Operator field, then click one of the Operator buttons:

For example, to display alarm entries whose acknowledgement status is false,
click the Equals button.

6 In the Value field, enter the value to apply the operator to and press the Enter
key.

Caution Be sure to press the Enter key after entering the value; otherwise, the value
does not get set.

For example, to display alarm entries whose acknowledgement status is false,
enter false. and press Enter.

Equals

Does not equal

Contains

Does not contain

Greater than

Greater than or equal to

Less than

Less than or equal to

Exists

Does not exist
141

Here is a fully defined filter that displays unacknowledged alarm entries:

7 Specify additional filter criteria, as needed.

Tip You can use the Cut/Copy/Paste buttons to help you specify additional filter
criteria. You can copy a cell, a row, or column, then paste it into a selected cell,
row, or column.

If you specify more than one filter criterion, select a logical operator (AND or
OR) to apply by clicking the left-most field to toggle between AND and OR
operators.
142

Using the Alarm Queue
Here is a filter that causes the Alarm Queue to display unacknowledged alarm
entries of severity 1:

8 Click OK to create the filter. The name of the newly defined filter appears in
the Available Filters list of the Select Filter dialog:

Filters that you create by using the Select Filter button are temporary. You can
make temporary filters permanent (see Making a Temporary Filter
143

Permanent), or you can define permanent filters that appear automatically
when you use the Select Filter button (see Creating a Permanent Filter).

9 To select the new filter, click the filter name, then click the right arrow button
to move it to the Filters in Use list.

This dialog specifies that the unacknowledged-alarms filter is in use:

10 If you create additional filters, specify the logic for combining them by
clicking the and or or radio buttons under the Filters in use list.

Making a Temporary Filter Permanent

Filters created using the Select Filter dialog box are temporary filters. This section
describes how to make these filters permanent.

To make a temporary filter permanent:

1 From the KB Workspace menu, choose New Button, then action-button, and
put the button on a workspace.

2 Pause G2, then click the button to display its menu.

3 If desired, define a name and/or label.

4 Define the button’s action as:

in order transfer filter-name to this workspace and make filter-name permanent

where filter-name is the name of your temporary filter.
144

Using the Alarm Queue
5 Resume G2.

6 Click the button to execute its action, then find and move the filter. Its name
appears when you choose name from its menu, then press Enter.

Applying a Filter

Once you have defined a filter, you must move that filter to the Filters in use list
on the Select Filter dialog box, then apply the filter to the current queue view to
begin filtering queue entries.

Only queue entries that meet the filter criteria appear on the queue view. Entries
that do not meet the filter criteria are considered hidden. The view entry counter
indicates the number of entries that appear on the queue view. The total entry
counter indicates the number of entries in the queue. The total entry counter
appears only when the queue contains entries that are not displayed in the view.

To apply a filter to a queue view:

1 Click the Select Filter button to display the Select Filter dialog box.

2 Select a filter you want to apply and click the right arrow button between the
two lists to move the filter to the Filters in use list.

3 Click OK when you have moved all the desired filters and close the dialog
box.

4 Click the Apply Filters button, the second button from the left.
145

Whenever you create a new filter by clicking the Select Filter button in a queue,
the permanent filter appears in the list of available filters:

The button remains depressed to indicate that filtering is in effect. Queue entries
that do not satisfy the filter criteria do not appear on the queue view. If any
entries are not displayed, the total entry counter appears, indicating the number
of entries in the queue.

Deleting a Filter

You can delete any defined filter, whether it is permanent or temporary.

To delete a filter:

1 Display the Select Filters dialog box.

2 Select the filter you want to delete.

3 If the filter is in the Filters in Use list, move the filter from that list to the
Available Filters list by clicking the left arrow button. You can only delete
filters in the Available Filters list.

4 Click the Delete Filter button.

5 Click Yes to confirm the deletion.

If the filter is permanent, you can also delete it by selecting it and choosing delete
from its menu.

unacknowledged-alarms can
be applied to the queue view.
146

Using the Alarm Queue
Sorting Entries

By default, queues sort entries in this way:

• The Alarm Queue sorts entries by severity in ascending order, with the
highest severity entries at the top.

• The Error, Explanation, and Message Queues sort entries by age in
descending order, with the newest entries at the top.

You can sort entries based on any of the displayed queue entry attributes, in
ascending or descending order.

You can also specify the column on which to sort initially and the initial sort
order. For more information, see Configuring Sorting Attributes.

To change the sort column:

 Click the column header you want to use as the sort column. An asterisk (*)
appears to the right of the column header text to indicate that sorting is based
on this attribute.

To change the sort order of queue entries:

1 Click the column header you want to use as the sort column. An asterisk (*)
appears to the right of the column header text to indicate that sorting is based
on this attribute.

2 Click the Sort Entries button to toggle the sort order between ascending and
descending.

Sending Entries to Another Queue

You can send queue entries from one queue to another. The entry that you send
must be compatible with the destination queue: the entry must be of the same
class as or of a subclass of the entry class of the destination queue.

You can send entries of any type to a Message Queue. You can send entries to
other queues only if the entry is of the same class as, or of a subclass of the entry
class specified for the destination queue. If no customized entry classes are
defined for an application, you can send an entry from an Alarm Queue to
another Alarm Queue; from an Error Queue to another Error Queue; and from an
Explanation Queue to another Explanation Queue.

You can preserve queue entries by saving or logging them to a file. For more
information, see Saving a Queue Entry and Logging Queue Entries.
147

To send an entry to another queue:

1 Select the queue entry or entries you want to send to another queue.

Tip To select more than one contiguous entry, hold down the Shift key and select
additional entries. You cannot select non-contiguous entries.

2 Click the Send Entry button to display a dialog for specifying the name of the
destination queue.

3 In the Destination Queue field, enter the name of the destination queue. The
named queue must exist; otherwise, an error is generated.

The selected queue entries are removed from the source queue.

Viewing the Details of an Entry

Queue entries contain additional information that you can view by displaying a
detail view of the entry.

Error, explanation, and message entries contain user-entered comments that are
viewable on a detail view.

Alarm entries contain all of the following details, viewable on a detail view:

• Comments — Text that the end user enters while the entry is in the queue.

• Advice — Text that the developer enters when configuring the Alarm
Capability, Recurring Alarm Capability, or Queue Message block. Advice
provides information to the end user about how to respond to an alarm or
message.

• History — A chronological list of alarm events that indicate when the alarm
condition began and when it ended.

• Explanation — Text that GDA generates based on the current value of the
block that caused the alarm or message to be sent.

In addition to viewing details, you can perform these functions through the detail
view:

• Save individual details to a file.

• Add comments to the queue entry.

• Generate the current explanation for the entry (Alarm Queues only).
148

Using the Alarm Queue
This figure shows a selected alarm entry in the Alarm Queue:

To show the detail view:

1 Select the entry whose details you want to view.

2 Click the View Details button to display the detail view.

If the message displayed in the queue view has been truncated to fit into the
available space, the full message will appear in the detail view, with a scroll bar
added if needed.

When the detail view first appears, it displays the text for the queue entry, as this
figure shows:

View details button
149

You access the additional information and interact with the detail view by
clicking the various buttons. This figure shows the labeled toolbar buttons (other
queues do not provide all these buttons):

Displaying the Entry Message Text

At any time when viewing details, you can display the original entry message
text.

To display the entry message text:

 Click the View Message button.

Adding and Viewing Comments

The application user can add comments to the message while viewing the details.
New comments are appended to any existing comments.

To add a comment:

 Click the Add Comment button and enter a comment in the dialog that
appears. Press Enter after entering the comment. Comments are added to the
entry and all views of the entry are updated to include the comments.

To view existing comments:

 Click the View Comment button.

To save comments to a file:

 Click the Save Comment button and specify a file name. If the file exists and is
not empty, GDA overwrites the contents of the file.

View message

View advice

View explanation

Add comment

Update and view explanation

Save details

View history

View comment
150

Using the Alarm Queue
Providing and Viewing Advice for Alarms

You might want to provide advice to the application user about what to do if a
particular alarm occurs. Using the example above, suppose the High Value
Observation block with the Alarm Capability tests the temperature and generates
an alarm when the temperature exceeds 70 degrees.

To provide advice, configure the Advice attribute of the Alarm Capability, for
example, adding "Turn down the heat".

For more information on configuring advice, see the Alarm Capability in the
GDA Reference Manual.

Advice is only available for entries in the Alarm Queue.

To display advice:

 Click the View Advice button.
151

Here is the advice as it appears in the detail view and as it is specified in the
Alarm Capability:

This advice...

... is generated from this
attribute of the Alarm
Capability.
152

Using the Alarm Queue
Viewing an Alarm Explanation

You can view an explanation associated with an alarm entry from the detail view.

To view an explanation for an alarm, both of these conditions must be satisfied:

• The Autogenerate Explanations attribute must be true for the Alarm Queue.
You can set this attribute by configuring the queue.

• The Automatic Explanation attribute must be true for the Alarm Capability
block. You can set this attribute by configuring the block.

For more information on configuring GDA blocks to provide explanations, see
Specifying and Generating Explanations.

You can also view an explanation of an inference block’s output value by selecting
the block and choosing the current explanation menu choice. These explanations
appear on the Explanation Queue.

To cause an Alarm Capability to generate explanations automatically:

1 Configure the Automatic Explanation attribute of the Alarm Capability to be
yes.

2 Configure the Autogenerate Explanations attribute for the Alarm Queue to be
yes. For more information, see Configuring Attributes that Are Specific to
Alarm Queues.

To view the current explanation:

 Click the View Explanation button.

Clicking this button shows the last explanation that has been generated, which
might not be for the current alarm.

To manually generate a new explanation and view it (when explanations are not
generated automatically for an alarm message):

 Click the Update and View Explanation button.

Clicking this button shows the current explanation when the Alarm Queue and
Alarm Capability are not configured to generate explanations automatically.

If the state of the diagram changes so that the alarm is no longer active and you
generate a new explanation, both the original and the current explanations will be
displayed in the detail view.

Viewing the Alarm History

You can view the history of a particular alarm entry through the detail view. An
alarm history describes when an entry went into and out of alarm.

By default, the Alarm Queue reuses alarm entries that represent the same alarm
condition. When the Reuse Entry attribute for the Alarm Queue is yes, the history
153

documents when an entry goes into and out of alarm. You can cause the Alarm
Queue to generate a new entry each time the alarm condition occurs by setting the
Reuse Entry preference of the Alarm Queue to no. In this case, when an alarm
condition goes back into alarm, a new entry is created. The history of this alarm
indicates only the time it went into alarm.

GDA purges all entries in the history when the number of entries exceeds the
History Limit attribute, 50 by default. You can change this limit by setting this
Alarm Queue preference. For information on configuring Alarm Queue
preferences, see Configuring a Queue. For more information about the alarm
queue history, see Configuring Attributes that Are Specific to Alarm Queues.

History is only available for entries in the Alarm Queue.

To view the alarm queue entry history:

 Click the View History button.

The alarm history of a particular alarm entry might look like this:

Saving Details to a File

You can save individual parts of the queue entry’s details to a text file.

By default, GDA saves the queue entry details to a text file named print-queue,
whose name appends the current date and time to the file name, for example:

print-queue-990914-121716.text

You can configure the format of the date and time that gets appended by
configuring the File-Time Format preference, as described in Configuring Date
and Time Formatting.

History entry
154

Using the Alarm Queue
To save details of a queue entry to a file:

1 Display the part of the queue entry details you want to save by clicking the
appropriate button.

For example, to save the current explanation, click the View Explanation
button.

2 Click the Save Details button and enter a file name or use the default.

For example, saving the explanation of an alarm entry might result in a file that
looks like this:

Explanation

09/01/1999 17:52:34 The temperature is too high because
Temperature = 0.978 (threshold: 0)

Showing the Source of an Entry

Typically, queue entries are associated with a particular block or capability. You
can also generate queue entries programmatically, using the API, as described in
the GDA API Reference.

If the source of a queue entry is an item that exists on a workspace, you can show
the source of the entry. You can show the source of an Alarm, Explanation, or
Error Queue entry; Message Queue entries have no source.

If the source of an entry does not exist on a workspace, showing the source has no
effect.

To show the item that generated an alarm, explanation, or error entry:

 Click the Go to Source button.

GDA opens the workspace that contains the source and displays a blinking red
arrow next to the block or capability that generated the entry, as this figure
shows:
155

Acknowledging Alarms

Typically, when an alarm is generated and appears in the Alarm Queue, the end
user acknowledges the alarm.

The Require Acknowledgement attribute of the Alarm Capability and the
Acknowledge Selected Entries attribute of the Remove Entries button determine
whether the user must acknowledge the alarm before it can be removed from the
queue:

• If the Acknowledge Selected Entries attribute of the Remove Entries button on
the queue view is yes, the user can remove the alarm entry without
acknowledging it first.

• If the Acknowledge Selected Entries attribute is no and acknowledgement is
required for the alarm (the default), the user must acknowledge the alarm
before it can be deleted from the queue.

• If the Acknowledge Selected Entries attribute is no and acknowledgement is
not required, the Ack column automatically displays Yes when the entry is
posted and the user can delete the entry in one step.

The Acknowledge Selected Entries attribute is described in Modifying Button
Attributes.

The Reuse Entry attribute of the Alarm Queue determines whether an entry is
reused when an alarm condition occurs again. This attribute affects the alarm
history and log; if an alarm entry is reused, its status can be tracked in a single
history display or log file. If an alarm entry is not reused, recurrence of an alarm
condition causes a new entry to be created, so its history is limited to the single
entry that records its creation. The Reuse Entry attribute is described in
Configuring Attributes that Are Specific to Alarm Queues.

The Alarm Queue can keep track of the time when an alarm is acknowledged by
writing this information to a log file, as described in Logging Queue Entries.

You can filter messages based on whether the alarm has been acknowledged, as
described in Filtering Queue Entries.

You can only acknowledge Alarm Queue messages.

To acknowledge an alarm entry:

1 Select the alarm message or messages you want to acknowledge.

Tip To select more than one contiguous entry, hold down the Shift key and select
additional entries.

2 Click the Acknowledge button.
156

Using the Alarm Queue
The Ack (Acknowledged) column updates to indicate that the alarm has been
acknowledged and its color changes. You can now remove the alarm from the
queue.

This example shows the result of acknowledging an alarm and the same alarm
condition occurring again, which generates a new alarm message:

Because this alarm message has already been
acknowledged...

...this alarm message is generated when the
same alarm condition occurs.

Acknowledgement

status is Yes.

Acknowledgement status is
unacknowledged.
157

This example shows an Alarm Capability that specifies Require
Acknowledgement as no. When the same alarm condition occurs again, the
existing acknowledged alarm highlights and the history is updated.

When the alarm occurs, it is automatically
acknowledged, because the Require

Acknowledgement attribute is no.

When the alarm condition occurs
again, the existing alarm message

history is updated.
158

Using the Alarm Queue
Saving a Queue Entry

You can save a queue entry to a text file. The text includes a unique ID for the
alarm entry, as well as its severity, timestamp, acknowledgement status and time,
and history.

By default, GDA saves the queue entry to a text file named save-selected, with
the current date and time appended to the file name, for example:

save-selected-990914-121716.text

You can configure the format of the date and time that gets appended by
configuring the File-Time Format preference, as described in Configuring Date
and Time Formatting.

You can also save queue entry details to a file, as described in Saving Details to a
File. You can also log alarm entries to a file, as described in Logging Queue
Entries.

To save a queue entry to a file:

1 Select the queue entry you want to save.

2 Click the Save Entry button and enter a file name or use the default.

Saving an alarm entry might result in a file that looks like this:

***** Summary: GDA-ALARM-ENTRY-00609703e2f8-936278684.549-926 *****
Severity: 1 At: 09/02/1999 09:24:44 CT: 09/02/1999 09:24:44

Acknowledged on 09/02/1999 at 08:41:25
----- History -----
Purging history because the maximum number of elements, 50, was
exceeded at time 09/02/1999 09:32:54
Entered alarm on 09/02/1999 at 09:32:59
Returned from alarm on 09/02/1999 at 09:33:04
Entered alarm on 09/02/1999 at 09:33:14
Returned from alarm on 09/02/1999 at 09:33:19
Entered alarm on 09/02/1999 at 09:33:24
Returned from alarm on 09/02/1999 at 09:33:49
Entered alarm on 09/02/1999 at 09:34:04
Returned from alarm on 09/02/1999 at 09:34:14
Entered alarm on 09/02/1999 at 09:34:19
Returned from alarm on 09/02/1999 at 09:34:24
Entered alarm on 09/02/1999 at 09:34:29
Returned from alarm on 09/02/1999 at 09:34:54
Entered alarm on 09/02/1999 at 09:34:59
Returned from alarm on 09/02/1999 at 09:35:04
Entered alarm on 09/02/1999 at 09:35:09
Returned from alarm on 09/02/1999 at 09:35:14
Entered alarm on 09/02/1999 at 09:35:19
159

Removing Entries from the Queue View

You can remove individual entries or all visible entries from the queue view. By
default, when removing individual entries from an Alarm Queue view, the alarm
must first be acknowledged. When removing all entries from a queue view, the
entries need not be acknowledged because they will automatically be
acknowledged before being deleted.

Any entries that are not currently visible due to filtering or locking remain in the
queue.

When you remove an entry from a queue, the entry remains in any other queues
in which it exists. If the entry does not exist in any other queues, the entry is
permanently deleted.

By default, when you remove entries from the queue view, GDA does not confirm
the deletion. You can configure the Confirm Deletions attribute of a queue to
cause the queue to display a confirmation dialog before removing entries, as
described in Confirm Deletions.

To remove individual entries from a queue view:

1 Select the entry or entries you want to remove.

Tip To select more than one contiguous entry, hold down the Shift key and select
additional entries.

2 If you are removing entries from an Alarm Queue view, acknowledge the
entry if it is not already acknowledged. For details, see Acknowledging
Alarms.

3 Click the Remove Entry button.

To remove all visible entries from a queue view:

 Click the Clear View button.

To remove all entries from a queue view, both visible and hidden, you must first
deactivate any current filters and unlock the queue, as needed. For details, see
Filtering Queue Entries and Locking the Alarm Queue View.

Locking the Alarm Queue View

You can prevent any new entries from appearing in an Alarm Queue view by
locking the view. Any entry sent to the queue while it is locked is hidden from the
view. When you unlock the view, the hidden messages appear in the queue.

When new alarm entries are generated, the queue displays an additional counter
that indicates the total number of messages in the queue.

Locking is only available in the Alarm Queue.
160

Using the Alarm Queue
To lock a queue view:

 Click the Lock View button.

The button remains depressed indicating that locking is in effect. The icon
changes its appearance and the lock turns red.

This Alarm Queue is currently locked, as indicated by the depressed Lock View
button. The total entry counter indicates that the queue contains 2 messages,
although the second message was posted after the view was locked, so it is not
visible, as the view entry counter indicates.

To unlock a queue view:

 Click the Lock View button when it is depressed.

Total entry counter
View entry counter

The Lock View
button is clicked.
161

Using the Error Queue
The Error Queue appears whenever an error occurs in a GDA diagram. For
example, this error occurred when an attempt was made to divide by zero:

To view details about the error message:

1 Select the error message in the queue.

2 Click the View Details button. If the message displayed in the queue view has
been truncated to fit into the available space, the full message will appear in
the detail view, with a scroll bar added if needed. In this example, the detail
view shows the same error message text shown in the queue view:
162

Using the Explanation Queue
From the detail view, you can add and view comments, save the error message to
a text file, and view the error message (if, for example, the detail view is
displaying a comment), as described in Viewing the Details of an Entry.

The error entry is also stored in the error attribute on the block where the error
occurred. You can clear the error by removing the error from the queue view or
resetting the block from the block’s menu.

From the queue view, you can also perform these functions:

• Filter error messages, described in Filtering Queue Entries

• Change the sort order of the entries, described in Sorting Entries

• Send entries to another queue, described in Sending Entries to Another Queue

• Save entries to a text file, described in Saving a Queue Entry

• View the source of the error, described in Showing the Source of an Entry

• Delete entries, described in Removing Entries from the Queue View

Using the Explanation Queue
The Explanation Queue displays explanations for the output values of inference
blocks. Explanations of alarms appear on a detail view of the Alarm Queue.

Using the Explanation Queue, you can:

• Add and show comments for the explanation

• Save the explanation and comments to a text file

To perform these tasks, select the explanation and access the detail view. For
information on how to access the detail view and manipulate the explanation and
comments, see Viewing the Details of an Entry.

From the queue view, you can also perform these functions:

• Filter explanations, described in Filtering Queue Entries

• Change the sort order of the entries, described in Sorting Entries

• Send entries to another queue, described in Sending Entries to Another Queue

• View the source of the explanation, described in Showing the Source of an
Entry

• Save entries to a text file, described in Saving a Queue Entry

• Delete entries, described in Removing Entries from the Queue View

For general information on using explanations, see Specifying and Generating
Explanations.
163

Using the Message Queue
The Message Queue appears when a message is posted to the queue. Using the
Message Queue, you can:

• Add and show comments for the message

• Save the message and comments to a text file

To perform these tasks, select the message and access the detail view. For
information on how to access the detail view and manipulate the message and
comments, see Viewing the Details of an Entry.

From the queue view, you can also perform these functions:

• Filter messages, described in Filtering Queue Entries

• Change the sort order of the entries, described in Sorting Entries

• Send entries to another queue, described in Sending Entries to Another Queue

• Save entries to a text file, described in Saving a Queue Entry

• Delete entries, described in Removing Entries from the Queue View
164

Sending Messages to Queues Using the Queue Message Block
Sending Messages to Queues Using the Queue
Message Block

The Queue Message block enables you to send messages to any queue. The target
queue handles the message as it would handle queue entries sent to the queue by
other means. The block’s Configuration dialog box has changed for this release,
adding attributes that apply to all the queue types.

To send a message to any queue:

1 Attach a Queue Message block to the output control stub of any block.

2 Click on the Queue Message block and select configure to display the
Configure dialog box.
165

3 To send a message to the Error, Explanation, or Message Queue.

a Select the queue in the Display Queue list.

b Enter the text of the message in the Entry Text field, then press Enter.

c Press OK.

4 To send a message to the Alarm Queue:

a Select the queue in the Display Queue list.

b Enter the text of the message in the Entry Text field, enter a value for the
Severity attribute, choose whether acknowledgement is required for the
message, and, optionally, enter text in the Advice field, then press Enter.

c Press OK.

5 When the Queue Message block receives a control signal, it sends the
message.

The Entry Priority attribute is not used.

You should not change the value of the Alarm Status attribute.

The Filter Tag attribute is not used by GDA but is available for customizing
messages and using filters. Using the attribute enables an application to
distinguish between alarm sources.

The Belief Value and Belief Status attributes are described in the GDA Reference
Manual.
166

4

Custom Block Wizard
Describes how to create subclasses of GDA custom block classes, which are
available on a palette and which you can use in diagrams.

Introduction 167

Using the Custom Class Wizard 168

Creating a New Custom Subclass 169

Customizing the Block Evaluator 180

Editing an Existing Custom Subclass 190

Deleting an Existing Custom Subclass 191

Custom Class Reference 193
General 194
Peer Input 195
Multiple Invocations 200
Single Source Encapsulation 206

Introduction
The Custom Class Wizard enables you to create subclasses of GDA blocks. These
new blocks can provide functionality beyond what built-in GDA blocks provide.
You can access these custom subclasses from user-defined palettes and clone the
blocks as needed for use in a diagram.
167

There are two general categories of blocks for which you can create a custom
subclass, using the Custom Class Wizard:

• Custom blocks enable you to create new classes of GDA blocks that evaluate
G2 procedures. You use the Custom Class Wizard to create subclasses of one
of three different classes of GDA block:

– General custom blocks perform evaluations on single or multiple inputs
when the block needs to reference specific inputs by port name. The
Difference block on the Arithmetic palette is a kind of General custom
block because the bottom input is subtracted from the top input, which
requires that the block evaluator refer to each input by name.

– Peer Input custom blocks perform evaluations on single or multiple
inputs when the block treats all inputs equally. The Summation block on
the Arithmetic palette is a peer input block because all inputs are added
together without requiring that they be uniquely identified.

– Multiple Invocations custom blocks allow control over how the block
processes additional inputs that the block receives while it is processing an
existing input. The block processes its inputs the same way as a General
custom block. The Data Delay block on the Data Control palette is a kind
of multiple invocations block.

• Encapsulation blocks enable you to manage the complexity of a GDA
diagram by placing a portion of the diagram on a subworkspace.

– Single Source Encapsulation (SSE) blocks enable you to create multiple
instances with the same subworkspace diagram. The SSE block enables
you to make changes in all instances of the block throughout your
diagram by changing the master copy of the block.

– Simple Encapsulation blocks are similar to Single Source Encapsulation
blocks, except that you cannot propagate changes in the definition of the
encapsulation to other blocks in the diagram. For more information, see
the GDA Reference Manual.

Using the Custom Class Wizard
You use the Custom Class Wizard to create new subclasses of GDA blocks and to
edit existing subclasses. You can create subclasses of existing GDA custom block
classes or create custom block subclasses.

The following sections describe how to create a General custom block that raises
its input value to a power (xn). The example shows how to edit the existing
definition and edit the procedure for the custom class. The technique applies to all
types of custom subclasses. Refer to the individual sections that follow for details
specific to each type of custom subclass.
168

Creating a New Custom Subclass
Note This is a simple example used to illustrate how to create and edit a custom
subclass with a custom block evaluator; however, you could obtain the same
functionality using the Arithmetic Function block on the Functions palette.

Creating a New Custom Subclass
Follow these steps to create a new custom subclass.

To create a new custom subclass:

1 Choose Wizards > Custom Class Wizard from the top menu bar to display the
Custom Class Wizard Activity Selector:

2 Choose create subclass under the Choose activity area at the left.

GDA displays all the available classes from which the new custom subclass
can inherit its definition.

Note The list includes standard GDA classes, as well as custom subclasses whose
definitions are based on GDA classes. Thus, you can create custom subclasses
that inherit from other subclasses, thereby creating a hierarchy of custom
block classes.
169

3 To narrow the scope of the list of available classes, select only the category of
available classes that you want to see from the check boxes at the lower right
of the dialog.

By default, all the available categories are selected. Click on a check box to
toggle the selection off and on. GDA automatically updates the list of
available classes to correspond with the selected class or classes.

For example, here is the dialog with only the three custom block classes
displayed in the list of available classes:

4 Choose one of the available classes as the superior class for the custom
subclass.

For example, to create a custom block that raises an input to a power, choose
gdl-custom-block. The following table maps the GDA class names that appear
in the Activity Selector dialog to the GDA block types:

GDA Class Name GDA Block Type

gdl-custom-block General

gdl-custom-peer-input-block Peer Input

gdl-custom-multiple-invocations-
block

Multiple Invocations

gdl-simple-encapsulation Encapsulation

gdl-single-source-encapsulation Single-Source Encapsulation
170

Creating a New Custom Subclass
5 Click OK to accept the selections.

Specifying the Class Name

The Custom Class Wizard displays the default icon for the class you selected in
the Custom Class Wizard Activity Selector dialog, and displays the first step in
the sequence:

To specify the class name:

 Enter a unique symbol for the custom class name in the dialog.

When editing an existing custom class, as described in Editing an Existing
Custom Subclass, existing class names appear in the list.
171

Customizing the Icon

In the second step, the Custom Class Wizard prompts you to edit the icon:

To edit the icon:

 Click on the Edit icon button to display the G2 Icon Editor. See G2
documentation for information about using the Icon Editor.

For example, here is the General custom block icon whose color has been
changed:
172

Creating a New Custom Subclass
Customizing the Connection Stubs

In the third step, the Custom Class Wizard prompts you to create input and
output ports on the block. The wizard displays Stub Tools across the top of the
dialog for creating the ports:

For example, for the custom block created earlier, add a single named data input
path and a single named data output path.

To add ports to a block:

1 Drag a stub of one of the Stub Tools to the side of the block on which you want
to add an input stub.

To create an input stub, drag the bottom or right stub on a Stub Tool into the
desired side of the block, and click to place the stub; to create an output stub,
drag the top or left stub on a Stub Tool into the desired side of the block, and
click to place.

You can also drag an individual stub tool to the left or right of the block, then
connect the stub to the block. Creating stubs this way might make it easier to
remember which stub to connect to the block.
173

Tip The GDA convention for data and inference paths is to add input stubs to the
left or top side of a block, and add output stubs to the right or bottom side of
the block. For control paths, input stubs enter the top of the block and output
stubs go out the bottom of the block.

The wizard displays a dialog for entering the name of the port:

2 Specify a new name for the input stub, or use the default name, and click OK.

The Custom Class Wizard disconnects the Stub Tool from the block, leaving a
stub on the block icon. The block uses the name you specify in the block
evaluator for the block. For more information, see Customizing the Block
Evaluator.

You can name the input and output ports, using names that are appropriate
for the behavior of the block. The GDA convention for an input port is dp-in
(or dp-in-1, etc., for multiple input ports) and dp-out for an output port.

In this example, we name the input port of the Power Block base to indicate
that the input data value is the base value that is raised to a power.

3 Repeat for each input and output path on the block.

In this Power Block example, we name the output path result.

Note The port names should be different for each port, and they cannot be reserved
words in G2, e.g., in and out. See the GDA Reference Manual for more information
about creating stubs, including stub naming conventions.

When you create Peer Input data blocks, you only need to name the output ports.
For more information, see Declaring Input and Output Path Local Names.
174

Creating a New Custom Subclass
Customizing the Attributes

After you add stubs to the block icon, you are prompted to edit the attributes of
the block. The wizard displays this dialog with a button for editing the attributes:

For example, the custom power-block class that raises the input value by a power
might raise the input data value to the value of the Exponent attribute. The
Custom Class Wizard automatically generates a configuration dialog for
configuring the class-specific attributes of the block.
175

To add a simple attribute to the block:

1 Click the Edit Attributes button to display the Attribute Editor:

The Attribute Editor enables you to add new attributes to the definition or
delete existing attributes. For simple attributes, you can specify the name, data
type, and initial value. You can also add attributes that are variables or
parameters, in which case you can specify the variable or parameter class, and
you can specify how the attribute keeps its history. GDA provides default
variable and parameter class names in the Class of Attribute field.

2 Enter a unique symbol in the Attribute Name field and press the Return key.

In the Power Block example, enter exponent as the name of the attribute.

3 Select a data type from the Value type list.

In the Power Block example, click integer as the data type for the exponent.
176

Creating a New Custom Subclass
GDA will verify the user entry to ensure that it matches the data type you
select. Select not typed to allow the user to enter any type of data as the value
of the attribute.

Note To cause GDA to run more efficiently, use the most specific Value type you
can.

If you select symbol as the Value type, the Symbol enumeration button is
enabled. Select this button to specify the symbolic values for the attribute.

In the Power Block example, the Class of Attribute is simple value.

4 Enter the default value for the attribute in the Initial value field.

In the Power Block example, the initial value for the Exponent attribute is 1.

5 Click Apply to add the attribute to the list of current class-specific attributes.

6 Repeat these steps to add as many attributes as desired.

7 When you are finished, click OK.

Specifying the Palette and Module

Next, the Custom Block Wizard prompts you to enter the name of the palette on
which an instance of the custom class will appear, and the name of the module in
which the class definition is stored:
177

The palette is associated with the module. When you create a new palette, you
assign the palette to a particular module. If you choose an existing palette, GDA
fills in the module for you automatically.

To specify the palette on which the block is to appear:

 Enter the name of a custom palette in the Palette Name field, or scroll through
the list of palettes and choose an existing palette.

To specify the module in which the custom class definition is stored:

 Enter the name of an existing module in the Module field.

The default module is gdaapps, which is the name of the top-level module in the
GDA hierarchy. If you specify another module, be sure that the module exists
before you create a custom class to be stored in this module. A better choice of
module names for a sample custom block would be test or example.

Applying the New Class Definition

When you have completely specified the custom class, the last step is to commit
your changes.

To apply the new class to the menus:

1 Click the Finished button.

If you have created a subclass of one of the three types of custom blocks, as
opposed to one of the encapsulation blocks, GDA displays a dialog asking if
you want to edit the block evaluator now.

2 Click No to add the custom class to the palettes first.

You can go back and edit the block evaluator later, as Customizing the Block
Evaluator describes.
178

Creating a New Custom Subclass
Cloning and Configuring the Custom Block

You find the user-defined palettes that contain instances of custom classes in the
Palettes menu in the User Defined submenu. For example, if you specify a palette
named New Palette, you would see the following menu item under the User
Defined menu, which would display the following palette:

To configure the class-specific attributes of the custom class:

 Clone the custom block from the palette, and choose configure.

GDA displays the automatically generated configuration dialog for the block.

Here is an instance of the power-block class with its configuration dialog, which
contains the Exponent attribute:

If you create a custom class with an attribute that contains a variable or
parameter, the variable or parameter appears in the custom block’s table.
179

Customizing the Block Evaluator
When creating custom subclasses of one of the three types of custom blocks (a
General, Peer Input, or Multiple Invocations custom block), you must also create a
procedure that the custom block executes when it receives a value on its input
path(s). This procedure is called the block evaluator.

See the G2 Reference Manual for general information on G2 procedures.

The Custom Class Wizard automatically generates a block evaluator template for
any custom block that you create. The evaluator template provides all the code
needed to obtain the value of all the input paths and set the value of all the output
paths that the block defines. You edit the body of the procedure to create the
custom procedure that the block executes.

Displaying the Block Evaluator

You can edit the evaluator for a custom block class when you initially specify the
custom class, or you can create the custom class first and go back and edit the
procedure later.

For example, in Creating a New Custom Subclass, you created a new custom
block named power-block, which is a subclass of gdl-custom-block. In Applying
the New Class Definition, you added the custom block directly to the new palette
without editing the procedure.
180

Customizing the Block Evaluator
To display the block evaluator of an existing custom block class:

1 Select Wizards > Custom Class Wizard to display the Custom Class Wizard
Activity Selector dialog.

2 Select edit evaluator as the activity.

The wizard automatically displays all existing custom subclasses in the list of
available classes.

Tip If you have created many custom classes, you can narrow the scope of the list
of available classes to edit by selecting the desired category of classes whose
subclasses you want to display.

3 Select the existing custom block class whose evaluator you want to edit.

To edit the evaluator for the Power Block example, select the power-block
class.

4 Click OK to edit the evaluator.
181

The Custom Class Wizard removes the dialog and displays a workspace that
contains the default custom block evaluator:

The procedure that appears is a G2 procedure object whose name appends
“-evaluator” to the associated custom block class name.

Note If you want to change the name of the block evaluator, you must also change the
name of the Evaluator attribute in the table of the class definition to correspond
with the new evaluator name.

To display the block evaluator of a new custom block class:

 Follow each set of steps under the headings in Creating a New Custom
Subclass, except that after you click Finished in step 6, click Yes to edit the
block evaluator immediately.

Types of Custom Block Evaluators

There are three basic types of block evaluators, depending on the type of custom
block. The following table outlines how each block evaluator processes its input
path values, and how this affects the block’s evaluation:

The block
evaluator for a...

Declares input
path values using... Which means...

General
custom block

Separate local names
that the block
evaluator refers to by
name

The block evaluator
identifies the inputs
individually

Peer Input
custom block

A single local name for
all paths connected at
the input of the block,
and looping over the
inputs

The block evaluator
treats all inputs equally

Multiple
Invocations custom
block

The same procedure as
the General custom
block

The block evaluator
identifies the inputs
individually
182

Customizing the Block Evaluator
For a detailed description of each block evaluator, see General, Peer Input,
Multiple Invocations, and Single Source Encapsulation.

Note The default block evaluators provide you with the basic structure for obtaining
data from the input path(s) and placing data onto the output path(s). It is up to
you to customize how the block processes the data. You are free to edit any of the
generated code, as well, if it does not meet your needs.

Editing the Block Evaluator Procedure

You use the G2 text editor to edit the custom portion of the block evaluator
procedure. You use the named input and output ports in the procedure.

To edit the block evaluator:

1 Click on the procedure, and choose edit from the menu.

The default G2 block evaluator for the particular type of custom block appears
in the G2 Text Editor.

2 Edit the portion of the code below the comment {** Your code goes here **}.

3 Verify that the procedure you created is valid by checking the Notes attribute
in the procedure’s table. Make any necessary corrections.

In the Power Block example, the following figure shows the block evaluator. The
block raises its input value by the value of the attribute exponent.

The figure labels each portion of the block evaluator. The table following the
figure provides a brief explanation of each portion of the block evaluator. The
following headings provide more detailed explanations.
183

The
portion
labeled... Does the following... For more information, see...

A Declares the procedure
name and arguments

Declaring the Procedure Name
and Arguments

B Declares the input and
output local names

Declaring Input and Output Path
Local Names

C Obtains the input path
values

Obtaining Input Path Values

D Determines the output
path attribute values

Determining Output Path
Attributes for Custom Blocks

E Customizes the output
path value

Editing the Custom Portion of
the Block Evaluator

F Sets the output path
values

Setting Output Path Values

A

B

C

D

E

F

184

Customizing the Block Evaluator
Example Using the power-block Custom Block

The following figure illustrates how you use the power-block custom block to
raise the input value of a numeric entry point to the third power. The block’s
configuration dialog shows the value of the Exponent attribute as 3. The data
input value is 5. The output path’s table shows the output Data-value, which
is 125.

Declaring the Procedure Name and Arguments

The block evaluator’s procedure name is the name of the block with the word
“-evaluator” appended to it, for example, power-block-evaluator.

The following table describes the procedure arguments. You use these arguments
within the body of the evaluator as arguments to other procedures.

table

configure

The argument... Declares...

blk: class block-class The current block being evaluated, where block-
class is the subclass name, e.g., power-block

mode: symbol Whether the inputs are being supplied manually
using override mode (manual) or from the data-
driven evaluation of the block (automatic)

client: class ui-client-
item

The client in which the block is evaluating,
e.g., g2-window, if available, or gfr-default-
window
185

Declaring Input and Output Path Local Names

In general, the block evaluator reads values from the input path(s), performs a
calculation using the inputs, and sets the resulting value(s) on the output path(s).

To do this, the block evaluator automatically declares local names for the input
and output path values that the block defines. The format of the local names
depend on:

• The type of custom block. For General and Multiple Invocations custom
blocks, the block evaluator specifies separate local names for each input path,
which appends “-value” to the port name. For Peer Input custom blocks, the
block evaluator creates a single local name for each class of input path.

• The type of connection path. For data paths, the port names refer to the data
values; for inference paths, the port names refer to the status and belief values;
for item paths, the port names refer to the item; there are no local names for
control paths.

For example, a General custom block with two data input ports named input-data-
path-1 and input-data-path-2, and two data output ports named output-data-
path-1 and output-data-path-2 have the following local names:

input-data-path-1-value, input-data-path-2-value
output-data-path-1-value, output-data-path-2-value

Compare this with the local names for a Peer Input custom block with two data
input ports and two data output ports with the same names. Notice that there is
only a single local name for the input ports, regardless of their names or number.

in-value
output-data-path-1-value, output-data-path-2-value

Local Names for the General and Multiple Invocations Custom Blocks

The following table summarizes the default local names for General and Multiple
Invocations custom blocks that correspond to each type of input and output
connection path. The table shows the local names associated with the first input
and output ports created. Subsequent port names of the same type append
numbers sequentially. Note that if you have renamed the input or output ports
for the block, the local name includes the port name you specified, rather than the
default port name.

For...
The input local
names have the form...

The output local
names have the form...

Data
paths

input-data-path-1-value output-data-path-1-value

Inference
paths

input-inference-path-1-status
input-inference-path-1-belief

output-inference-path-1-status
output-inference-path-1-belief
186

Customizing the Block Evaluator
Local Names for the Peer Input Custom Blocks

The following table summarizes the default local names for Peer Input custom
blocks that correspond to each type of input and output connection path. The
table shows the local names associated with the first output port created.
Subsequent output port names of the same type append numbers sequentially.

In addition, the local name declaration portion of the custom block evaluator
declares local names for the input and output path attributes, such as Quality and
Expiration-time. The local name declarations also initialize values for these path
attributes.

Obtaining Input Path Values

The first part of the body of the block evaluator gets values from input paths. To
do this, the block evaluator uses one of the following API (Application
Programmer’s Interface) procedures that obtains data from a path. For more
information, see the GDA API Reference.

Item
paths

input-item-path-1-item output-item-path-1-item

Control
paths

N/A The user needs to manually
encode the local variables and
processing for a control output
path.

For...
The input local
names have the form...

The output local
names have the form...

For...
The input local
names have the form...

The output local
names have the form...

Data
paths

in-value output-data-path-1-value

Inference
paths

in-status
in-belief

output-inference-path-1-status
output-inference-path-1-belief

Item
paths

in-item output-item-path-1-item

Control
paths

N/A N/A

The API procedure... Retrieves data from...

gdl-get-data-path-value Any data path

gdl-get-inference-path-value Any inference path
187

The API procedures return all relevant input path values: Data-value for data
paths, Status-value and Belief-value for inference paths, Quality, Expiration-time,
Collection-time, and Timestamp for data and inference paths, and Quality and
Timestamp from a control path.

Note Typically, these API procedures obtain data from an input path; however, you
can also use them to obtain data from an output path as necessary.

Caution Always use an API procedure to obtain data from a path. Do not refer to path
attributes by name.

Determining Output Path Attributes for Custom
Blocks

The body of the block evaluator must resolve the output path Quality, Expiration-
time, and Collection-time for custom blocks with multiple inputs using the
following two API procedures. Note that the block evaluator does not determine
the Timestamp attribute. These procedures are described in detail in the GDA API
Reference Manual.

The block evaluator resolves the output Collection-time using the maximum
collection time of the input collection times.

gdl-get-control-path-value Any control path

gdl-get-resident-path-item Any item path and leaves
the item on the path

gdl-get-path-item Any item path and removes
the item from the path

The API procedure... Retrieves data from...

The API function... Resolves...

resolve-gdl-quality The Quality attribute of an output path using the
lowest quality of its two quality arguments. For
a description of the quality hierarchy, see The
Quality Attribute.

resolve-gdl-expiration The Expiration-time attribute of an output path
using the earliest of its two expiration time
arguments.
188

Customizing the Block Evaluator
Editing the Custom Portion of the Block Evaluator

The custom portion of the block evaluator follows the comment
{** Your code goes here **}. This portion of the block evaluator defines the output
path value for the block, which is declared using a local name.

For the power-block, the value of the output path named result is the exponent
(exp) of the product of the exponent attribute defined by the block and the
logarithm (ln) of the value of the input path named base, which raises the base
value to the exponent power.

result-value = exp(the exponent of blk * ln(base-value))

For information on how to specify a procedure, see the G2 Reference Manual.

Setting Output Path Values

The last part of the block evaluator sets values onto output paths. To do this, the
block evaluator uses one of the following API procedures that set a value onto an
output path and causes the evaluation of downstream blocks. For more
information on these procedures, as well as procedures that do not cause
downstream evaluation, see the GDA API Reference Manual.

Caution Within an evaluator, do not set a block’s inputs, otherwise an infinite loop may
occur.

The API procedure... Sets data onto...

gdl-propagate-data-path-value A data path

gdl-propagate-inference-path-value An inference path

gdl-propagate-control-path-value A control path

gdl-propagate-resident-path-item An item path and removes,
but does not delete, the other
item on the path

gdl-propagate-path-item An output item path and
deletes the other item on the
path
189

Editing an Existing Custom Subclass
Once you have created a new custom subclass, you can edit the definition of the
subclass: its icon, its ports, its attributes, and its evaluator. When you do this,
GDA creates a new custom block evaluator and backs up the old evaluator to a
different name.

To edit the class definition of an existing custom subclass:

1 Choose Wizards > Custom Class Wizard from the top menu bar.

2 Choose modify existing definition under Choose activity. GDA displays all the
existing custom subclasses that you can edit. For example:

3 To narrow the scope of the list of existing subclasses, under List, select only
the category of available custom subclasses that you want to edit.

By default, all the available categories are selected. Click on a selected check
box to toggle the selection off and on. GDA automatically updates the list of
existing subclasses to correspond with the selection.

4 Click OK to accept the selections.

5 Follow the Custom Class Wizard’s prompts to edit the block.
190

Deleting an Existing Custom Subclass
Note GDA creates a new block evaluator based on the new custom class and renames
the existing evaluator to old-classname-evaluator. If you have customized the
block evaluator of the existing class, you can copy code from the old evaluator
into the new evaluator.

The prompts are the same as when creating a new custom subclass, as explained
in Creating a New Custom Subclass.

To edit the evaluator of an existing custom subclass:

Note If you try to edit the evaluator of a custom class created before GDA Version 3.0,
you get an error message that the procedure has been moved. You should first
edit the old custom class with the Wizard, which will put the evaluator procedure
in the proper place. You can then edit the evaluator.

1 Choose Wizards > Custom Class Wizard from the top menu bar.

2 Choose edit evaluator under Choose activity.

GDA displays all the existing custom subclasses whose evaluators you can
edit.

3 To narrow the scope of the list of existing subclasses, under List, select only
the category of available custom subclasses that you want to edit.

By default, all the available categories are selected. Click on a selected check
box to toggle the selection off and on. GDA automatically updates the list of
existing subclasses to correspond with the selection.

4 Click OK to accept the selections. GDA displays the block evaluator for the
custom subclass.

5 Edit the block evaluator as desired.

Deleting an Existing Custom Subclass
You can delete a custom subclass and remove it from the custom palette. As a
result of deleting a subclass, you might want to reconfigure the layout of the
custom palette or delete the palette.

To delete an existing custom subclass:

1 Choose Wizards > Custom Class Wizard from the top menu bar.

2 Choose delete class under Choose activity.
191

GDA displays all the existing custom subclasses that you can delete. For
example:

3 To narrow the scope of the list of existing subclasses, under List, select only
the category of available custom subclasses that you want to delete.

By default, all the available categories are selected. Click on a selected check
box to toggle the selection off and on. GDA automatically updates the list of
existing subclasses to correspond with the selection.

4 Click OK to delete the subclass.

5 Click Yes in the confirmation dialog to delete the custom subclass.

Note The wizard deletes the custom subclass itself, any subclasses of the custom class,
as well as all instances of the custom subclass, including the instance on the
custom palette.

If you delete a class, you can reconfigure the layout of the custom palette. For
example, if you deleted the first of several blocks on a palette, you might want to
move the existing custom blocks up on the palette.

To reconfigure the layout of the custom palette after deleting a class:

 Go into Administrator mode, and move the blocks and associated labels to the
desired location on the palette. You can move a block by dragging it. You can
move a label by using operate on area.
192

Custom Class Reference
If you have deleted all custom blocks on a palette, you might want to delete the
custom palette itself.

To delete a custom palette:

 Go into Administrator mode, and select the delete palette menu item on the
palette workspace.

Custom Class Reference
This section describes each of the GDA classes from which you can create a
custom subclass. These are the classes that are available:

• General

• Peer Input

• Multiple Invocations

• Single Source Encapsulation
193

General
The General custom block specifies the basic set of attributes necessary for
creating a custom GDA block. The General custom block performs evaluations on
single or multiple inputs when the block needs to reference specific inputs by port
name. The Difference block on the Arithmetic palette is similar to a General
custom block because the bottom input is subtracted from the top input, which
requires that the block evaluator refer to each input by name.

Note To create a custom block where the block evaluator does not identify the inputs
by name, use the Peer Input block, described on . To create a general-purpose
custom block that handles multiple simultaneous values, use the Multiple
Invocations block, described on .

For general information on how to specify the block and its associated procedure,
see Creating a New Custom Subclass and Customizing the Block Evaluator.
194

Peer Input
Peer Input
The Peer Input custom block performs evaluations on single or multiple inputs
when the block treats all inputs equally. The Summation block on the Arithmetic
palette is similar to a Peer Input block because all inputs are added together
without requiring that they be identified separately. A Peer Input custom block
specifies additional attributes that determine which inputs the block uses in its
calculation based on the input quality.

For general information on peer input blocks, see Connecting to Peer Input
Blocks.

Note To create a custom block where the block evaluator identifies each input by its
port name, use the General block, described on , or the Multiple Invocations
block, described on .

Creating Connections for Custom Peer Input Blocks

You use the Custom Class Wizard to customize the connection ports of subclasses
of the gdl-custom-peer-input-block class. When adding input ports to a Peer Input
custom block, notice that, by default, the wizard does not name the port. This is
because a Peer Input custom block treats all inputs equally, and the block
evaluator loops over all the inputs to determine their values. The wizard does,
however, name all output ports of a Peer Input custom block.

Tip Typically, you create a single input port on a Peer Input custom block, and you
drag addition input paths into an instance of the block on a workspace to create
additional inputs. When creating the subclass, however, always create at least one
input port to generate the correct block evaluator.

Customizing the Peer Input Custom Block Evaluator

The block evaluator for a Peer Input custom block with input data paths defines a
single local name for all input paths connected to the block, and loops over the
inputs to obtain their values. The block evaluator for a Peer Input custom block
with input inference paths defines a single local name for the status value and a
single local name for the belief value of all input paths connected to the block.
This is in contrast to a General custom block, which defines separate local names
for each input connection whose values are obtained independently. See the next
example for details.
195

Because of the way the default Peer Input block evaluator is designed, several
things follow:

• The block evaluator for a Peer Input custom block cannot control the order of
evaluation of the inputs.

• The custom portion of the block evaluator cannot differentiate among
individual input path values for paths of the same type, e.g., data paths.

• You can drag input paths into the block on a workspace after you customize
the subclass.

• You do not need to name input paths when adding connections to the block
using Stub Tools or dragging connections into the block on a workspace.

Configuring

This is the configuration panel for the subclass of a Peer Input custom block
created in the example below:

Example

Suppose you want to create a custom block that calculates the sum of the squares
of its inputs. To do this, use the Custom Class Wizard to create a Peer Input
custom block that sets the output path value to the square of its input values. The
default block evaluator loops over all of the inputs, which processes all of the
input paths, regardless of their names or number.

The following figure shows the Peer Input custom block, its evaluator, and its
table. Notice that the block only has one input path by default. You can edit the
value of the Use-expired-inputs attribute in the table.

Attribute Description

Use Expired Inputs For information on this attribute, see
Determining Whether a Block Uses Expired
Inputs.
196

Peer Input
197

The figure below shows the block evaluator for this custom class, with important
parts labeled. The table that follows the figure provides a brief explanation of
each labeled portion of the block evaluator.

A

B

C

D

E

198

Peer Input

The following figure illustrates how you use this block to sum the squares of a
custom block with three input paths. You drag the input paths into the block on a
workspace after you create the custom block. The input values are 2, 3, and 4, and
the output path Data-value is 29.

The portion labeled... Does the following...

A Declares a single local name for all input paths

B Initializes the output path

C “For” loop, which loops over input paths to
obtain their value

D Determines output path quality

E Custom portion of procedure, which sets the
output value to the sum of the squares of each
input value
199

Multiple Invocations
The Multiple Invocations custom block processes simultaneous signals. The block
processes its inputs the same way as a General custom block. The Data Delay
block on the Data Control palette is similar to a Multiple Invocations block. A
Multiple Invocations custom block specifies additional attributes that determine
how the block handles simultaneous signals.

For information on the options available for the Multiple Invocations attribute of
a block that handles multiple signals, see Specifying How to Handle Multiple
Values.

Note To create a custom block that does not process simultaneous signals, use the
General custom block or the Peer Input custom block.

Determining How the Block Handles Multiple
Control Signals

The Multiple Invocations custom block contains two configurable attributes that
determine what happens when the block receives multiple values: Multiple
Invocations and Asynchronous Evaluation. The block also has two read-only
attributes in its table that indicate the current status of the multiple invocations of
the block: Invocations-waiting and Invocations-running.

The default value for Multiple Invocations is ignore, and the default value for
Asynchronous Evaluation is false. The result is that the block processes single
values one time and ignores extra values, as shown in the following figure. The
boxes indicate values or signals received and processed by the block. The line at
the left of the diagram indicates an incoming value to the block, and the line to the
right of the diagram illustrates outgoing values.

When Multiple Invocations is ok, Asynchronous Evaluation should be true in
order to allow multiple processing. In the following diagram, the dashed item
under the heading Invocations Waiting indicates values that are automatically

Invocations Waiting Invocations Running
200

Multiple Invocations
advanced to the Invocations Running category without waiting. The items under
the heading Invocations Running indicate values currently being processed.

When Multiple Invocations is queue, the block only processes a single value at a
time. If Asynchronous Evaluation is true, the following block evaluates
immediately after the current block is advanced to the Invocations Running. If
Asynchronous Evaluation is false, GDA waits until the current block is finished
evaluating before evaluating the next block. In the following diagram, the block
receives a value, which goes into the queue. The block processes the oldest value
in the queue first.

Note If the block takes a long time to evaluate, you may want to set Asynchronous
Evaluation to true to allow other processing in the overall GDA diagram while the
block evaluates.

Customizing the Multiple Invocations Custom Block
Evaluator

The Multiple Invocations custom block evaluator is identical to the General
custom block evaluator. You customize the block evaluator as you would for any
custom block.

Invocations Waiting Invocations Running

Invocations Waiting Invocations Running
201

Configuring

This is the configuration dialog for the subclass of a Multiple Invocations custom
block created in the example below:

A subclass of a Multiple Invocations custom block also defines these two read-
only attributes in its table:

For more information about these attributes, see Specifying How to Handle
Multiple Values.

Attribute Description

Multiple Invocations Specifies whether the block ignores (ignore),
queues (queue), or processes (ok)
simultaneous signals when the block is
already evaluating

Asynchronous
Evaluation

Specifies whether GDA waits for the
evaluation of the block to finish before
beginning the next evaluation (false), or
begins the evaluation of the next block
immediately (true)

The attribute... Is a...

Invocations Waiting Read-only attribute that indicates the number
of signals in the queue when Multiple
Invocations is queue

Invocations Running Read-only attribute that indicates the number
of simultaneous evaluations when Multiple
Invocations is ok
202

Multiple Invocations
Example

Suppose you want to create a block that delays processing its input signal by
three seconds and adds one to the delayed input. To do this, create a Multiple
Invocations custom block with a single input data path and a single output data
path. To allow processing of multiple simultaneous inputs, specify Multiple
Invocations as ok. To allow other processing during the three second delay,
specify Asynchronous Evaluation as true.

The following figure shows the block, the evaluator, and the associated table:
203

The following figure shows the Multiple Invocations custom block evaluator,
which labels the custom portion of the code, which delays processing for 3
seconds, then increments the output value:

The following table shows sample input and output values for this block. The
input and output values update once a second. The output values increment the
input value associated with tn-3 by one.

Custom portion of
procedure

At time... The input value is... And the output value is...

0 seconds 0.0 no-value

1 second 1.0 no-value

2 seconds 2.0 no-value

3 seconds 3.0 1.0
204

Multiple Invocations
4 seconds 4.0 2.0

5 seconds 5.0 3.0

6 seconds 6.0 4.0

7 seconds 7.0 5.0

8 seconds 8.0 6.0

9 seconds 9.0 7.0

At time... The input value is... And the output value is...
205

Single Source Encapsulation
The Single Source Encapsulation (SSE) block enables you to manage complexity
in a GDA model. Using SSEs enables you to:

• Create a specialized block that is associated with a diagram, in which blocks
are configured with default attribute values

• Clone the SSE multiple times within a model

• Modify attribute values of blocks within a “local” copy of the SSE

• Manage the “master” copy of the SSE, propagating modifications to local
copies of the SSE

Using SSEs enables you to maintain consistency among cloned diagrams
encapsulated on a subworkspace.

You use the Custom Class Wizard to create a subclass of the gdl-single-source-
encapsulation class. The new subclass has a customized icon, connections, and
attributes. Each instance of a particular subclass inherits the block’s definition,
including its subworkspace.

You can also create subclasses of the gdl-simple-encapsulation class. For more
information on simple encapsulation blocks, see the GDA Reference Manual.

Creating a New Subclass of SSE Block

When you create a new subclass of a Single Source Encapsulation block, you have
two choices:

• Use the Custom Class Wizard to create a subclass of the gdl-single-source-
encapsulation class, and edit the subclass.

• Convert a Simple Encapsulation block to a Single Source Encapsulation block
by selecting convert to sse from its menu. This creates an instance of the new
subclass of SSE and places it on the workspace.

Note You cannot create subclasses of SSE blocks that are based on an existing custom
subclass. This behavior is unlike General, Peer Input, and Multiple Invocations
custom blocks, where you can create subclasses of subclasses of these three types
of custom blocks.
206

Single Source Encapsulation
To create a new subclass of SSE block:

1 On the Custom Class Wizard Activity Selector dialog, deselect the custom
blocks and simple encapsulations choices in the List area, make sure the gdl-
single-source-encapsulation class is highlighted, then choose OK:

2 The next steps are the same ones used to create any custom block, described in
Creating a New Custom Subclass.

On the dialog that appears for the next step, enter a class name for the new
SSE class, then choose Forward.

3 Next, use the Stub Tools to add input and output stubs to the block, then
choose Forward.

Note When you create a subclass of Single Source Encapsulation block, there is no
need to name the ports explicitly. Be sure to create as many input and output
ports as you will need when you are creating the subclass, because you cannot
interactively add paths to the block on a workspace.

4 Next, specify any attributes for the SSE block and choose Forward.

5 Next, specify the palette on which the custom block is to reside, specify the
module, then choose Forward.
207

The Master Diagram and the Local Diagram

An SSE is associated with two diagrams:

• A Master Diagram, which defines the encapsulation for all instances of the
SSE. The master diagram is the workspace on which the blocks that make up
the SSE reside.

• A Local Diagram, which defines the local version of the SSE. You can
configure blocks in the local diagram differently than they are configured in
the Master Diagram.

You interact with these diagrams in the following ways:

• You create the SSE and define its structure by creating its Master Diagram.
You configure blocks in the diagram to provide their default values.

• You can modify the structure of the Master Diagram, which updates the
structure of all Local Diagrams of the same subclass; local attribute values
remain unchanged. See Editing the Master Diagram for details.

• You can modify the local attributes of a particular instance on the Local
Diagram without affecting the local attributes of other instances of the same
subclass. See Viewing the Local Diagram for details.

• You can modify attribute values for all instances of a particular subclass using
the broadcast facility, which overwrites individual local attribute values. See
Changing the Value of an Attribute for details.
208

Single Source Encapsulation
The following diagram illustrates some of the ways of interacting with this block:

1 Create Subclass A, which is a subclass of the gdl-single-source-encapsulation
class, by using the Custom Class Wizard.

2 Create an instance of subclass A by cloning the customized block from the
custom palette.

3 Edit the Master Diagram of subclass A (3a), configure the default attributes for
the blocks (3b), and save the diagram to update the Local Diagrams of all the
instances of subclass A.

4 View the Local Diagram of any instance.

5 Configure the local attributes of any blocks within the diagram of any
instance, as needed.

Configuration
Dialog

high
med
low

Temp-1
Temp-2
Temp-3

configure5

Create custom subclass using wizard

Local
Diagram

edit clone

Local
Diagram

Master
Diagram

Subclass ASubclass A

Subclass A

local
attributes

view view

configure

Configuration
Dialog

high
high
high

Temp-1
Temp-2
Temp-3

1

23a

4

5

Configuration
Dialog

high
med
low

configure

Temp-1
Temp-2
Temp-3

3b
4

local
attributes
209

Editing the Master Diagram

After creating a new subclass of Single Source Encapsulation block, edit the
Master Diagram to:

• Create the initial encapsulation diagram.

• Edit an existing diagram and propagate the changes to other blocks of the
same subclass.

Displaying the Master Diagram

To display the Master Diagram:

 Select edit master diagram from the menu of an instance of a Single Source
Encapsulation block.

When you create a new subclass, the Master Diagram is initially empty, except for
the connection posts associated with the input and output ports defined for the
block.

The input(s) to the Single Source Encapsulation block is passed to the block(s)
connected to the input connection post(s) on the diagram. This value is then
passed through all the blocks in the diagram until it reaches the output
connection post(s). The output(s) of the Single Source Encapsulation block is the
value(s) that is passed to the output connection post(s) on the diagram.

The following figure illustrates the Master Diagram and associated Single Source
Encapsulation block with one data input port and two data output ports:

Note that the Master Diagram of a Single Source Encapsulation block does not
contain a close button or a go to superior workspace button like the simple
Encapsulation block. Instead, you must close the diagram using save diagram or
cancel diagram editing, as described in Saving the Master Diagram.
210

Single Source Encapsulation
Note You cannot edit the Master Diagram from two instances of the same class
simultaneously.

Editing the Blocks on the Master Diagram

You edit the Master Diagram by adding, deleting, or moving blocks or
connections. Editing the structure of the Master Diagram has these restrictions:

• You configure the attributes of blocks on the Master Diagram to define their
default values; you configure blocks on the Local Diagram to provide values
for each instance.

• You cannot create connection posts manually on the Master Diagram;
connection posts on the Master Diagram must connect to the superior
workspace. To change the number of connection posts on the Master
Diagram, you must modify the existing definition of the subclass.

• You cannot place G2 objects on the Master Diagram except rules and free text.

• You cannot create scanned rules on an SSE, either by specifying a scan interval
for the rule. Rules are only invoked when the block evaluates.

• To include a subclass of G2 variable on an SSE, you must add an attribute
named sse-id to the variable’s definition.

• You cannot change the number of states of a Multi-state block contained on a
Local Diagram, only on the Master Diagram.

• You cannot evaluate blocks on the Master Diagram.

• When configuring a Chart Capability on the Master Diagram, you should not
specify the Name of Chart attribute; GDA does not preserve the value. You
should specify this attribute on the Local Diagram instead.

• When configuring a Numeric Entry Point, do not configure the Name of
Sensor attribute.

Using Rule Terminals on Single Source Encapsulation Blocks

You include Rule Terminals on a Single Source Encapsulation block to execute
rules when the block evaluates. When an instance of an SSE block receives a
value, the block invokes any rule located on its Master Diagram that refers to that
value.

For more information on including rules on an SSE, as well as some important
restrictions when using rules on SSEs, see the GDA Reference Manual.
211

Saving the Master Diagram

When you are done editing the Master Diagram, save the diagram, cancel editing
the diagram, or save the Master Diagram locally.

Saving the Master Diagram

To save the diagram:

 Choose save diagram from the Master Diagram’s workspace menu.

or

 Click on the title bar of the Master Diagram, then choose save diagram from
the menu that appears.

Saving the diagram updates all existing instances of the same subclass to use the
new structure. Depending on the number of existing instances, GDA displays a
clock in the upper-left corner of the window. Saving the Master Diagram also
closes the diagram.

Saving the Master Diagram does not replace local attribute values for previously
defined instances of the subclass. To change local attribute values, use broadcast
attribute on the Local Diagram for any block in the encapsulation, as explained in
Changing the Value of an Attribute. You can also delete the block from the Master
Diagram, then clone the block and define its default attribute values.

Note When saving the Master Diagram, GDA does not always preserve object names.

Note Be sure to save or close the Master Diagram of an SSE before saving the KB;
otherwise, errors may occur when you reload the KB.

Cancelling Editing the Master Diagram

To cancel editing the diagram without propagating the changes:

 Choose cancel diagram editing from the Master Diagram menu, which also
closes the diagram.

or

 Click on the title bar, then choose cancel diagram editing from the menu that
appears.
212

Single Source Encapsulation
Saving the Master Diagram Locally

If you want to test the encapsulation block locally before applying the changes to
all other instances, save the Master Diagram locally.

To save locally:

 Choose apply changes locally.

or

 Click on the title bar, then choose apply changes locally from the menu that
appears.

Saving the diagram locally saves the changes to the current instance. GDA
displays the Local Diagram for the instance and leaves the Master Diagram open.
Do not forget to edit the Master Diagram again and choose save diagram when
you are sure the changes are valid.

Creating Instances of a Single Source
Encapsulation

To create multiple instances of a Single Source Encapsulation block, clone the SSE
after customizing and saving its Master Diagram. Each instance of the subclass
contains the same diagram and attribute values as the subclass.

You customize local attribute values for individual instances as described in
Changing the Value of an Attribute.

You can modify attribute values on the Master Diagram and cause all instances of
the SSE to have the same attribute values by broadcasting each attribute value, as
described in Changing the Value of an Attribute.

Viewing the Local Diagram

Each instance of a Single Source Encapsulation block contains a Local Diagram,
whose structure is identical to that of the Master Diagram. You use the Local
Diagram for:

• Viewing the details of the encapsulation without editing the structure; you
cannot add, delete, or move any blocks or connections on the Local Diagram.

• Configuring the attributes of blocks for individual instances.

To display the Local Diagram:

 Choose view local diagram from the Single Source Encapsulation block’s
menu.

The title indicates that you are editing the local diagram.
213

To hide the local diagram:

 Click on the title bar of the diagram.

or

 Choose hide diagram from the Local Diagram’s menu.

Changing the Value of an Attribute

You change the value of attributes defined by blocks on the Local Diagram of a
Single Source Encapsulation block in one of two ways:

• Locally, for a single instance

• Globally, for all instances of a subclass

To change attribute values locally:

1 Display the Local Diagram for a particular instance by using the view local
diagram menu choice.

2 Edit the configuration dialog of any block.

3 Remove the diagram using hide diagram.

Any subsequent changes to the Master Diagram or the Local Diagram of any
other instance of the same subclass do not affect the locally defined attribute
values. However, locally defined attributes can be overridden by broadcasting
attribute changes; see the next sequence of steps.

To change attribute values globally:

1 Display the Local Diagram for a particular instance by using the view local
diagram menu choice.

2 Edit the configuration dialog of any block.

3 Choose broadcast attribute from the block’s menu to display the Broadcast
Attribute dialog.
214

Single Source Encapsulation
The following figure shows this dialog for a Multi-state block:

4 Select the name of a single attribute whose new value is to be broadcast.

5 Click Apply.

6 Repeat for as many attributes as necessary.

7 Select OK when done.

Changing attributes globally explicitly overrides local attribute values for the
specified attributes in all instances of the subclass.

Note Broadcasting attributes does not update the attribute values defined in the Master
Diagram.

Configuring Attributes in the Master Diagram

You generally only configure attributes in the Master Diagram when you initially
create the subclass to provide default values, then configure attributes in the
Local Diagram of an instance of a class of SSE to provide the values needed by
that instance..

When you create a subclass of SSE, you can specify attributes of blocks in the
Master Diagram; these become the default attribute values, which apply to all
instances of the subclass. To do this, be sure to configure the attributes before you
create multiple instances of the SSE by cloning; otherwise, not all instances will
have the default values.

Note You cannot broadcast attribute values from the Master Diagram.
215

Caution Do not configure the Chart Name for a Chart Capability on the Master Diagram;
otherwise, errors may occur. Similarly, do not configure the Sensor name for an
Entry Point.

Configuring

The Single Source Encapsulation block has no configurable attributes.

Example

The following example illustrates a diagram that uses three Single Source
Encapsulation blocks that test two input values and generate one output value.
The figure shows the Local Diagram for the bottom SSE block.
216

5

Creating and
Configuring Queues
Describes how to create new queues and configure their attributes to modify queue
behavior and appearance.

Introduction 217

Attributes of Queues You Can Modify 218

Creating a New Queue 219

Configuring a Queue 221

Using a New Queue 229

Logging Queue Entries 229

Introduction
GDA support four types of queues: Alarm Queue, Error Queue, Explanation
Queue, and Message Queue, and provides a built-in queue of each type, named
alarm-queue, error-queue, explanation-queue, and message-queue.
217

You can use features of the queue facility in your applications in these ways:

• You can use the built-in queues without changes to take advantage of the
features GDA provides. For more information about the features of the built-
in queues, see Attributes of Queues You Can Modify.

• You can modify the built-in queues to change some of these features.

• You can create new queues to change queue features or to provide multiple
queues of a particular type. You can also create a new queue class and
modifying an instance of the class. Creating a new queue class enables a
developer to extend the behavior or queues.

This table lists the queue types, indicating the source of the entries that get sent to
the queues:

This chapter describes how to create and specify the behavior of new queues.

For information about changing the appearance of queues, see Creating Queue
Views.

Attributes of Queues You Can Modify
You can modify numerous aspects of queues. The Error Queue, Explanation
Queue, and Message Queue have the same attributes. The Alarm Queue has
several additional attributes.

The queue attributes and procedures you can modify fall into these categories:

• Attributes that handle new queue entries

– Whether to display a view of the queue when an entry is generated

– Whether to beep when a new entry is generated

– The entry class of new entries posted to a queue

– A procedure to execute when a new entry is posted to a queue

This queue type... Posts entries from this source...

Alarm Queue Alarm Capability block
Recurring Alarm Capability block

Error Queue Errors in a GDA diagram

Explanation Queue Explanations of output values of
inference blocks

Message Queue Queue Message block (which can
send entries to all queue types)
218

Creating a New Queue
• Attributes that handle deletions of and changes to entries

– Whether to confirm deletion

– A procedure to execute when an entry is removed or deleted

– A procedure to execute when an entry is changed

• Attributes that manage queue capacity

– How long an entry exists

– How many entries a queue can contain

• Attributes that manage Alarm Queues

– Whether to log Alarm Queue entries and the format of those entries

– How many entries to maintain in the history

– Whether to reuse Alarm Queue entries or generate a new entry at each
new occurrence of an alarm condition

• Other attributes

– Whether to display the traceback for errors and alarms

Creating a New Queue
Creating a new queue enables your application to make use of multiple queues of
a particular queue type. For example, you might want to use different alarm
queues to receive alarms for different parts of an application.

To create a custom queue, you can create a new queue instance from a built-in
queue. The new queue is an instance of the same class as the built-in queue.

The built-in queues are instances of these classes and exist in these modules:

This built-in queue... Is an instance of this class... And exists in this module...

alarm-queue gda-alarm-queue gda

explanation-queue gqm-queue gda

message-queue gqm-queue gdabasic

error-queue gqm-queue gdabasic
219

These queue classes inherit from a common superior class, as this class hierarchy
shows:

To create a new queue:

1 Select Inspect from the Main Menu.

2 Type go to, then enter the name of the queue you want to clone (alarm-queue,
error-queue, explanation-queue, or message-queue).

3 If you entered alarm-queue or explanation-queue, this workspace appears:

gqm-queue

gda-alarm-queue

gqs-queue

alarm-queue

explanation-queue
220

Configuring a Queue
If you entered error-queue or message-queue, this workspace appears:

4 Click the queue you want to create a new instance of and choose create new
queue instance from its menu. Click in a workspace to place the item on the
workspace.

5 Click the new queue instance and choose name to specify the name of the new
queue.

Configuring a Queue
Once you have created a new queue, you configure it to modify its appearance or
behavior. You can also configure the built-in queues without creating new queue
instances.

For a queue class, you can configure characteristics of all queues in the class, or
you can configure characteristics of individual queues. You can then have an
application that provides multiple queues of a particular class, with some
characteristics shared by all the queues, and others that make each queue unique.
The characteristics that are shared by all queues of a queue type are called
preferences.

message-queue

error-queue
221

To configure attributes of a queue:

 Select the queue whose attributes you want to configure, then choose
configure from its menu. For example, this dialog box appears when you
configure an Alarm Queue:
222

Configuring a Queue
To configure preferences of a queue class:

 From the Preferences menu, select Queues, then select the type of queue
whose preferences you want to define. For example, this dialog box appears
when you set the preferences for Alarm Queues:

Configuring Attributes that Handle New Entries

This table lists the attributes that handle new queue entries. Each attribute is
described in more detail in the sections that follow.

Attribute Description

Beep for New Entry Whether or not to beep when a new entry is
generated. The default value is no.

Default Priority This attribute is not used by GDA. It can be used
by the GDA developer as a sorting or filtering
attribute. The value of this attribute sets the value
of the Gqm-priority attribute on each new entry
(this attribute is not available for Alarm Queues).

Display Messages Whether or not to display a queue view
automatically when a new entry is generated. The
default value is yes.
223

Beep for New Entry

This attribute determines whether the computer beeps when a new entry is
generated. The default is no.

If this attribute is set to yes, a beep occurs when a new entry is posted to the
queue only if the Display Messages attribute is yes.

Default Priority

This attribute is not used by GDA but provides the GDA developer an attribute to
use for sorting or filtering.

Display Messages

This attribute determines whether the queue is displayed when a new entry is
posted to it. If you set this attribute to no, you can display the queue by choosing
Show > Queues and choosing the queue type.

Entry Class

This attribute indicates the queue entry class that the queue will display.
Normally, the entry class should be the default. If you have defined an entry class
for queue entries, specify it here. The entry class must be compatible with the
queue; it must either be the default class or a subclass of the default class.

The entry constructor for alarm and recurring alarm entries expects that the
queue to which the entry is posted is an alarm queue (or a subclass).

In general, it is not necessary to subclass the queue entry classes because most of
the attributes of an entry, such as creation time, comments, severity, and
acknowledged, are filled in when the entry is created. However, you can create a
new queue entry subclass to customize or add attributes. For information on
creating a custom queue entry subclass, see the GDA API Reference.

Item Addition Callback

The Gqs-item-addition-callback attribute specifies the name of a procedure to
execute when an entry is posted to the queue. This enables an application to have

Entry Class The class of the entry created when posting to the
queue. The default entry class depends on the
queue type.

Item Addition
Callback

The procedure (callback) that executes when a
new entry is posted to a queue. The default is
unspecified.

Attribute Description
224

Configuring a Queue
access to an entry as it is posted to a queue through a single procedure. By default,
no procedure is associated with the queue types (the value is unspecified).

Application developers can monitor new queue entries in these ways:

• Notification of item addition; use the view manager and the subscription
feature

• Subclassing the queue; use a post method

• Subclassing the queue entry; use a constructor method

For more information about this callback, see the GDA API Reference.

Configuring Attributes that Handle Changes and
Deletions to Entries

This table lists the attributes that handle changes to and removals or deletions of
queue entries. Each attribute is described in more detail in the sections that
follow.

Attribute Update Callback

You use the Gqs-attribute-update-callback attribute to define the behavior that
occurs when an attribute of a queue entry is updated. By default, no procedure is
associated with the queue types (the value is unspecified).

For more information about this callback, see the GDA API Reference.

Confirm Deletions

This attribute causes a confirmation dialog to be displayed that requests that the
user confirm an attempt to either clear entries in a queue by pressing the Clear
View button or remove entries from a queue by pressing the Remove Entries
button.

Attribute Description

Attribute Update
Callback

The procedure (callback) that executes when an
attribute of an entry is changed. The default is
unspecified.

Confirm Deletions Whether or not to display a confirmation dialog
when the user clicks the Remove Entries or Clear
View button to clear entries in the queue. The
default value is no.

Item Removal
Callback

The procedure (callback) that executes before an
entry is removed from one queue but continues to
exist in another. The default is unspecified.
225

The confirmation dialogs look like this:

Item Removal Callback

A queue entry can exist in more than one queue. If you click the Remove Entries
or Clear View button when this is the case, the entry gets removed only from the
current queue, but remains in the other queues. If the entry is removed from the
last queue, it is deleted.

Note The Monitor Deletion Events attribute corresponds to the gqsv-monitor-deletion-
events-on-visible-items attribute of a gqmv-tabular-view-template, such as
gda-default-alarm-queue-view, the default queue view template for the alarm-
queue.

For more information about this callback, see the GDA API Reference.

Configuring Attributes that Handle Queue Capacity

This table lists the attributes that handle the capacity of queues. Each attribute is
described in more detail in the sections that follow.

Entry Lifetime

This attribute specifies how long an entry is retained in the queue, in seconds. The
default value is 0.0, which indicates that the entry never expires. When an entry
expires, it is removed from all queues on which it appears.

Attribute Description

Entry Lifetime The length of time until the queue entry expires,
in seconds. The default value is 0.0, which
indicates that the entry never expires.

Entry Limit The maximum number of entries allowable in the
queue. The default value is 100.
226

Configuring a Queue
Tip An expired alarm entry is not removed if the entry has not been acknowledged.
The alarm becomes inactive when it expires. Removing the entry from the queue
view requires that it first be acknowledged. Expired alarm entries are not reused.

This attribute applies only to Alarm and Explanation Queue entries, even though
the attribute appears on the Error and Message Queue configuration dialogs.

Entry Limit

This attribute specifies the maximum number of entries allowable in the queue.
The default value is 100.

If the maximum is exceeded, the oldest entries are removed until the entry limit is
satisfied.

Configuring Attributes that Are Specific to Alarm
Queues

This table lists the attributes that affect only the Alarm Queue. Each attribute is
described in more detail in the sections that follow.

Attribute Description

Alarm Log
Formatter

The name of the procedure that determines how
GDA formats alarm log text. The default is
gda-format-alarm-log-text.

Autogenerate
Explanations

Whether or not to generate explanations
automatically when an alarm is generated. The
default is no.

History Limit The maximum number of entries allowed in the
alarm history. The default value is 50.

Recurring Entry
Class

The queue entry class that the Alarm Queue uses
to display alarms that originate from a Recurring
Alarm Capability. The default is gda-recurring-
alarm-entry, which is a direct subclass of
gda-alarm-entry. The class must either be the
default or a subclass of the default class.

Reuse Entry Whether the Alarm Queue should reuse existing
alarm entries when the same alarm condition
occurs and the alarm has not been acknowledged.
The default is yes.
227

Alarm Log Formatter

This attribute specifies the name of the procedure that determines how GDA
formats alarm log text. The default is gda-format-alarm-log-text. For more
information, see the GDA API Reference.

For information on alarm logging, see Logging Queue Entries.

Autogenerate Explanations

This attribute determines whether to capture the explanation of the conditions
that caused an alarm when the alarm occurs and when an alarm changes its state.
For this attribute to cause explanations to be generated, the Automatic Explanation
attribute of the Alarm Capability must be yes. The detail view for the alarm
contains the first explanation for an alarm entry and the explanation for the most
recent state of the alarm.

The default value for this attribute is no, which requires that you click the Update
and View Explanations button to generate and view the current explanation.
Setting this attribute to yes causes the explanation of the condition when the
alarm went off to be retained even if the condition that caused the alarm to go off
changes.

Note To generate explanations automatically, you must also set the Automatic
Explanation attribute of individual Alarm Capabilities to yes.

History Limit

This attribute specifies the maximum number of notations allowed in the alarm
history. When the limit is exceeded, older entries are deleted. The default value is
50.

You view the alarm history by viewing the details of an alarm entry. For more
information, see Viewing the Alarm History.

Recurring Entry Class

This attribute specifies the queue entry class that the Alarm Queue uses to
generate alarms that originate from a Recurring Alarm Capability. The default
value is gda-recurring-alarm-entry, which is a direct subclass of gda-alarm-entry.

You can provide your own subclass to customize this type of alarm entry. For
details, see the GDA API Reference.

Alarm history notations are also written to the alarm log, if alarm logging is
turned on. For more information, see Logging Queue Entries.
228

Using a New Queue
Reuse Entry

This attribute determines whether the Alarm Queue should use an existing entry
when the same alarm condition occurs but the alarm has not yet been
acknowledged. A value of yes causes GDA to reuse the alarm and store the
information in the alarm history; a value of no causes GDA to generate a new
alarm entry.

Using Tracebacks for Alarms and Errors

When an error or alarm is generated, GDA can provide traceback information to
help determine the cause and location of the condition or problem. You can
specify that the traceback information be displayed on the queue detail view by
selecting Show Tracebacks on the Configure dialog for these queues. The default
value is yes, which causes the traceback information to be displayed. This
attribute is not available on the Explanation and Message Queues.

Using a New Queue
Once you have created and named a new queue, you can use the queue in the
same way as the corresponding built-in queue.

To use a new queue in place of a built-in queue:

1 Configure the target queue of the appropriate block or capability to be the
new queue.

For example, to specify my-alarm-queue as the target queue for an Alarm
Capability block, display the configuration dialog for the block, then select
that queue from the list of queues for the Display Queue attribute.

2 Specify the new queue as the Standard Queue attribute for the particular
queue type. Doing this enables you to access the queue when you select the
queue type from the Show menu.

Select Queues from the Preferences menu, then select the queue type of the
new queue. Specify the name of the queue for the Standard Queue attribute.

3 Configure the attributes of the new queue, as appropriate. For details, see
Configuring a Queue.

Logging Queue Entries
All queue types support the ability to write queue entries to a log file. You can use
this feature to record an entry’s activity. The entries are written to the file as they
are created. You can also selectively write queue entries to a file using the Save
Entries button on the queue view; see Saving a Queue Entry.
229

This table lists the default log managers for the four queue classes:

Enabling and Disabling Alarm Logging

By default, logging is initially turned off.

To turn on logging:

1 Using Inspect, go to the log manager.

2 Display the menu for the log manager and select turn on logging. GDA
displays the log file name above the log manager name in the workspace.

To turn off logging:

1 Access the log manager.

2 Display its menu and select turn off logging.

Providing a Name and Location for the Log File

By default, the log file is stored in your working directory and is named
logz_YYYYMMDDHHMMSS.txt, where

z indicates the queue type: a for Alarm Queue, e for Error Queue, x for
Explanation Queue, and m for Message Queue.

YYYYMMDD is the year, month, and day when the file is created.

HHMMSS is the hour, minutes, and seconds when the file is created.

To specify a name and location for the log file:

1 Access the gda-default-alarm-log-manager and display its table.

2 Set the Glf-log-directory attribute to the directory where the log file is to reside.
By default, the log file is stored in the same directory from which G2 is loaded.

3 The Glf-log-file-name-template attribute specifies the pattern of the log file
name. When creating a file name, GDA substitutes the date and time the file is
created at the location of the * character.

Queue Type Default Log Manager

Alarm Queue gda-default-alarm-log-manager

Error Queue gdabasic-default-error-log-manager

Explanation Queue gda-default-explanation-queue

Message Queue gdabasic-default-error-log-manager
230

Logging Queue Entries
To specify a different log file name, change this attribute value. You cannot
specify more than one * in the log file name template.

When GDA Creates a New Log File

GDA creates a new log file whenever:

• Logging is enabled after having been disabled.

• Logging is enabled and G2 is started or restarted.

• When a log file is open and the number of seconds specified by the log
manager’s Glf-time-interval-to-open-new-file attribute has elapsed from the
time the log file was created. The default is 86400 seconds, equal to 24 hours.

• When the size of the current log file exceeds the number of bytes specified by
the log manager’s Glf-maximum-file-size-in-bytes attribute. The default is
100,000 bytes.

When a new log file is created and the most recently created log file is empty, that
file is deleted if the log manager’s Glf-automatically-delete-empty-log-files
attribute is true.

Determining the Log File Header and Message
Contents

The log file contains:

• The log file name

• The log file header

• Log entries

The Log File Name

The log file name is centered on the top line of the log file and does not include the
.txt extension.

The Log File Header

The log file header, which appears below the log file name, consists of the name of
the log manager and the time the log file was opened, preceded and followed by a
row of equal signs. By default, the log file header is generated by the procedure
named in the log manager’s Glf-default-log-file-header-writer attribute.
231

Here is an example of a log file header for alarm entries:

===
Log file for GDA-DEFAULT-ALARM-LOG-MANAGER, opened at time 10 Aug
1999 11:53:12 a.m.
===

Alarm Log Entries

Each alarm log entry consists of a header, severity and time information, and the
description for the alarm. By default, these entry components are formatted as
follows:

• The header includes the UUID of the entry on a line that starts and ends with
five asterisks.

• The next line indicates the severity of the alarm, the time the alarm was raised,
and the collection time for the alarm.

• The entry also includes the description for the alarm the first time the alarm is
entered. The description is defined by selecting the Description button on the
configuration dialog box for the block connected to the Alarm block.

For example, the next four lines make up a sample initial alarm log entry:

***** GDA-ALARM-ENTRY-006008C5F93C-934302445.274-8690 *****
Severity: 2 At: 12:27:25 CT: 12:27:24

Tank is hot.

When an alarm that requires acknowledgement is acknowledged, GDA writes
summary and history information about the alarm to the log. The log contains
additional information depending on the value of attributes of the log manager:

• The advice, if the Gda-log-advice attribute is true

• Comments entered by the operator, if the Gqm-log-comments attribute is true

• The explanation for the alarm, if the Gda-log-explanations attribute is true

For example, this excerpt is written to the log when an alarm is acknowledged
and explanations, advice, and comments are written to the log:

***** Summary: GDA-ALARM-ENTRY-006008C5F93C-934302445.274-8690 *****
Severity: 2 At: 12:27:25 CT: 12:27:24

Acknowledged on 08/10/1999 at 12:28:09
----- History -----
Entered alarm on 08/10/1999 at 12:27:25
Returned from alarm on 08/10/1999 at 12:27:57
Entered alarm on 08/10/1999 at 12:28:00
Returned from alarm on 08/10/1999 at 12:28:02
232

Logging Queue Entries
----- Explanation -----
08/10/1999 12:27:42
Tank is hot. because the input value of GDL-HIGH-VALUE-OBSERVATION-XXX-
171 = 100 (threshold: 90)

----- Advice -----
This is the advice defined for the tank temperature observation.

----- Comments -----
This is a comment entered by the operator from the entry in the alarm queue

Error Log Entries

Each error log entry consists of a header and the description for the error. By
default, these entry components are formatted as follows:

• The header includes the date and time of the error and its priority.

• The next lines include the date and time of the error, then the description for
the error.

Explanation Log Entries

Each explanation log entry consists of a header, a date and time stamp, and the
description for the explanation. By default, these entry components are formatted
as follows:

• The header includes the UUID of the entry on a line that starts and ends with
five asterisks.

• The next line indicates the date and time the entry was generated.

• The lines that follow contain the explanation.

Message Log Entries

Each message log entry consists of a date and time stamp followed by the
message.

Customizing the Entry

You can modify the format of entries written to an Alarm Queue log. For more
information, see the description of the Alarm-log-formatter attribute in the
GDA API Reference.

Incremental Logging of Alarm Entries

If the log manager’s Gda-log-events-incrementally attribute is true, a log entry is
written each time a condition goes into or out of alarm.
233

If the attribute is false (the default), a log entry is written only the first time the
alarm is raised. When the alarm is acknowledged, the alarm history provides the
incremental information for the alarm.

The Time Format for Alarm Entries

You can modify the format of the times posted for each alarm entry. The log
manager’s Gqm-time-format attribute controls the format of the time. By default,
the format is determined by the datetime format. You can also define this attribute
value to be time, date, or filetime format. These formats are defined on the General
Queue Settings dialog box, accessible by choosing the Preferences > Queues >
General Settings menu item. For a list of formats, see Configuring Date and Time
Formatting.
234

6

Creating Queue Views
Describes how to customize aspects of the queue views.

Introduction 235

Characteristics of the Built-in Queue Views 236

Creating a New Queue View Template 240

Configuring a Queue View Template 242

Configuring the Detail View 266

Creating and Configuring the Access Manager 273

Introduction
All queue entries posted to a queue are held by the queue but are not necessarily
displayed to the user. The user sees entries on a queue view, which is a formatted
workspace containing information about the queue, buttons for manipulating
entries, and a table of queue entries.

The appearance, contents, and behavior of the queue view are determined by
these factors:

• View templates associated with the queue

• The access manager associated with the queue

• Filters applied to the queue
235

A view template defines a queue view, controlling the physical appearance and
behavior of the queue. GDA supplies a default view template for each queue type.
You can use this template, modify it, or create and configure a new template.

If you want to display queue entries for a particular queue type on just one view,
but you want that view’s appearance or behavior to differ from the built-in view,
you can either modify the built-in queue view template or create and configure a
new one.

If you want to display queue entries for a particular queue type on more than one
view, you need to create and configure new templates. If you do this, you also
need to create an access manager for the queue. The access manager specifies the
view template that determines the particular view seen by a specific user when an
application provides more than one view for a queue. If you need to use an access
manager, you must create one. For more information, see these sections:

• Creating a New Queue View Template

• Configuring a Queue View Template

• Creating and Configuring the Access Manager

A filter determines which queue entries are to be displayed on a queue view by
applying specified criteria to each entry. Only entries that satisfy the criteria are
displayed. For more information, see Filtering Queue Entries.

Characteristics of the Built-in Queue Views
GDA provides a queue view template that defines the appearance and behavior
of the built-in queue view for each queue type. This section shows what each
built-in queue view looks like and lists queue view characteristics.
236

Characteristics of the Built-in Queue Views
The built-in Alarm Queue view template generates an Alarm Queue view that
looks like this:

The Alarm Queue has these characteristics: a capacity of 100 rows, displaying 3
rows at a time; each row uses 3 lines. Text is displayed in small font. The history
has a capacity of 50 events. The entries do not expire; they do not beep when
generated; do not confirm deletion; are sorted by severity in ascending order; and
new entries are sorted. No callbacks are specified. Explanations are not
automatically generated. When the entry limit is reached, entries are removed
according to age.

The built-in Error Queue view template generates an Error Queue view that looks
like this:
237

The Error Queue has these characteristics: a capacity of 100 rows, displaying 3
rows at a time; each row uses 3 lines. Text is displayed in small font. The entries
do not expire; they do not beep when generated; do not confirm deletion; are
sorted by age in descending order; and new entries are sorted. No callbacks are
specified. Error tracebacks are displayed. When the entry limit is reached, entries
are removed according to age.

The built-in Explanation Queue view template generates an Explanation Queue
view that looks like this:

The Explanation Queue has these characteristics: a capacity of 100 rows,
displaying 2 rows at a time; each row uses 4 lines. Text is displayed in small font.
The entries do not expire; they do not beep when generated; do not confirm
deletion; are sorted by age in descending order; and new entries are sorted. No
callbacks are specified. When the entry limit is reached, entries are removed
according to age.
238

Characteristics of the Built-in Queue Views
The built-in Message Queue view template generates a Message Queue view that
looks like this:

The Message Queue has these characteristics: a capacity of 100 rows, displaying 5
rows at a time; each row uses 1 line. Text is displayed in small font. The entries do
not expire; they do not beep when generated; do not confirm deletion; are sorted
by age in descending order; and new entries are sorted. No callbacks are
specified. When the entry limit is reached, entries are removed according to age.
239

Creating a New Queue View Template
To create a new queue view, you first access the view templates, then clone a
template to your workspace.

To access the templates for the queues:

1 Using Inspect, enter the go to command followed by the name of the queue.

If you accessed the Alarm Queue or Explanation Queue, this workspace
appears:

If you accessed the Error Queue or Message Queue, this workspace appears:
240

Creating a New Queue View Template
2 Then, to access the view templates, click the Templates and Settings button on
the GDA Queues workspace, or the GDABASIC View Templates button on
the Basic Queues workspace.

If you are accessing templates for the Alarm Queue or Explanation Queue, this
workspace appears:

If you are accessing templates for the Error Queue or Message Queue, this
workspace appears:

To create a new queue view template:

1 Click the queue view template item on the workspace you displayed in the
previous step (for the Alarm Queue, click GDA-default-alarm-queue-view; for
the Explanation Queue, click GDA-default-explanation-queue-view) and
choose clone from its menu.

2 Move the template item into your workspace.

3 Choose name and provide a unique name for the new template.
241

Configuring a Queue View Template
You can configure these elements of the queue view for each type of queue:

• The number of lines for each entry

• The font size for entry text

• Sorting options, including the column on which to sort, the sort order,
whether new entries are to be sorted with existing entries, and whether
clicking on a column header causes entries to be sorted

• The queue view label, including the text and colors

• The queue view colors

• The toolbar buttons, including the location, attributes, and location

• The columns that contain values for the attributes of the entries, and their
headers

• The queue entry counters, including the location and colors

For example, you might want the default template to display more than the
default number of rows, or you might want to include additional columns to
display other queue entry attributes.

You can cancel changes you make to the table (columns) in the layout. You cannot
cancel other changes you make to the layout, such as buttons or counters,
although you can change them back to their original state.

The changes you make to the default queue view layout take effect the next time
you display a queue; currently visible queue views are not affected.

The steps you follow to configure a queue view depend on whether you are
configuring a built-in queue view template or a new queue view template. Both
follow.
242

Configuring a Queue View Template
Configuring a Built-in Queue View

To modify the built-in queue view associated with a particular queue, follow
these steps.

To configure a built-in queue view:

1 Choose Preferences > Queues, then choose the type of queue whose default
view you want to configure.

2 Click the Configure Default Queue View button. For the Alarm Queue, this
dialog box appears:

Some queue view characteristics are accessible on this dialog. For these, see
Modifying Queue View Attributes on the Configure Dialog. Other attributes,
which you access by clicking the Layout button, are described in Configuring the
Layout of a Queue View.

Configuring a New Queue View

To modify a new queue view, follow these steps.

To configure a new queue view:

 Click the queue view template item, then choose configure from its menu. This
is the dialog box that appears for the Alarm Queue view template (named my-
243

alarm-queue); the configuration dialog boxes for other view templates are
similar.

Modifying Queue View Attributes on the Configure
Dialog

You can configure the lines per row, font size, and sort attributes directly on the
Configure Queue View dialog box.

To apply modifications to the Font attribute and the sorting attributes, click the
Apply button to save the changes while keeping the dialog box open. Click the
OK button to save the changes and close the dialog box. Click Cancel to close the
dialog box without making changes. If you make changes and click Apply, then
click Cancel, only the changes made since you clicked Apply are not saved.

Configuring the Lines per Row Attribute

The Lines per Row attribute determines the number of lines used to display each
queue entry. The default value depends on the queue type: the Alarm Queue is 3;
the Explanation Queue is 4; the Error Queue is 3; and the Message Queue is 1.
Click the arrows to increase or decrease the number of lines per row.

When you modify the lines per row attribute, GDA displays the view template so
you can see the effects of the change. To accept the change, click on the
background of the template and select the Finished Configuration menu item. To
return to the dialog box without making the change, select the Cancel
Configuration menu item.
244

Configuring a Queue View Template
Configuring the Font Size Attribute

The Font Size attribute sets the size of the font to use for queue entry text. The
options are small, large, and extra-large. The default is small for all queue types.

Configuring Sorting Attributes

The Initial Column Key to Sort, Initial Sorting Order, and Re-sort New Entries
attributes control the sorting of queue entries.

The Initial Column Key to Sort attribute specifies the default column used to sort
entries. The sort key is a symbol that names a queue entry attribute, or a key
symbol that refers to a derived function. For information on the attributes you can
use for sorting, see the tables in Entry Attributes Used with Filters.

• The default for the Alarm Queue is gda-severity, which sorts entries based on
severity.

• The default for the Error, Explanation, and Message Queues is gqm-creation-
time, which sorts entries based on age.

The Initial Sorting Order attribute specifies whether to sort entries in ascending or
descending order.

• The default for the Alarm Queue is ascending, which displays entries with the
lowest severity at the top.

• The default for the Error, Explanation, and Message Queues is descending,
which displays the newest entries at the top.

The application user can override these settings. For details, see Sorting Entries.

The Re-sort New Entries attribute specifies whether to re-sort queue entries when
a new entry arrives. The default is yes. Setting the value to no causes new entries
to be added to the end of the entry list.

You can specify whether users can sort entries by clicking on a column header.
For more information, see Specifying Whether Clicking on a Column Header
Sorts Entries.

Configuring the Layout of a Queue View

To modify the layout associated with a particular queue view, follow these steps.

To configure the layout of a built-in queue view template:

1 From the Preferences menu, choose Queues, then choose the queue type
whose template you want to configure.

2 Click the Configure Default Queue View button, then click the Layout button.
245

Here is the built-in queue view template for the Alarm Queue:

To configure the layout of a queue view template:

 Click the template item and choose configure tabular view. The layout
workspace that appears is similar to the one shown above (or the same, if you
are configuring a view template for an Alarm Queue).

Modifying the Queue View Label

The queue view label is the text centered above the toolbar buttons. The label
consists of the text, the border around the text (by default, transparent), and the
background. The default label text is the queue type. You can modify the text,
position, and colors of the label.

To modify the queue view label:

1 To modify the queue view label text, click the text to display the editor and
enter a new string.

2 To modify the label position, drag the label to a new location on the template.

3 To modify the color of the text, background, or border:

a Click the border around the label to display the gqmv view label menu.
Because the border is not displayed, you need to click a short distance

View entry counter Queue label Total entry counter

Background

Toolbar

Columns

Column headers
246

Configuring a Queue View Template
from the text to select the border instead of the text or the template
background.

b Choose color.

c Choose background-color, foreground-color, or text-color.

d Choose the desired color from the palette.

This figure shows the Alarm Queue view with a queue label whose position, text,
and colors have been modified:

Modifying Queue View Colors

You can modify the background and foreground colors of the default queue view
by configuring the workspace colors.

• The queue background is the gray area.

• The queue foreground controls the color of the column header text, the border
around the column header and between each header, the border around the
table, and the label text, if it was not explicitly changed.

To configure overall view colors:

1 Click the grey background of the view. On the KB Workspace menu, choose
Color.

2 To modify the queue background color, choose background-color to display a
palette of colors, then select a color.

3 To modify the queue foreground color, choose foreground-color to display a
palette of colors, then select a color.
247

4 Save the changes by choosing Finished Configuration from the KB Workspace
menu. To cancel the change, you must manually return the colors to their
original values.

Manipulating Toolbar Buttons

You can delete, move, and add toolbar buttons to the queue view. You can also
create customized buttons by subclassing them and defining their public
methods.

You manipulate toolbar buttons from the queue view template. If you need
directions for displaying the template, see Configuring the Layout of a Queue
View.

Deleting Toolbar Buttons

You might not want certain toolbar buttons to appear on some queue views.

To delete a button from the view:

1 Click the button you want to delete and choose delete from its menu.

2 Move other buttons to a new location, as needed, as described in the next
section.

If you delete buttons, they do not get restored if you choose Cancel Configuration.

Moving Toolbar Buttons

To move a button:

 Drag the button to a new location.

Tip To adjust precisely the position of a button, scale the view until it is very large
by repeatedly entering Ctrl + b, move the button, then return the view to full-
size by entering Ctrl + f.

If you move buttons, their positions do not get reset if you choose Cancel
Configuration.
248

Configuring a Queue View Template
Adding Toolbar Buttons

You add buttons to the toolbar by cloning them from one of two palettes:

• The GDA Queue Palette, which contains buttons for acknowledging and
deleting alarms.

• The GQM Views Palette, which contains all the other buttons on the queue
view.

Caution You should not add detail view (subview) buttons to a queue view; these buttons
only work on the detail view.

Caution You should not add the Go to Source button to a Message Queue view because a
gqm-entry does not have a source. This button only works for the Alarm Queue,
Error Queue, and Explanation Queue.

To add buttons to the toolbar:

1 To add buttons that apply to the Alarm Queue:

a Using Inspect, enter go to alarm-queue.

b Click the GDA Queue Palette button to display this workspace:

You can clone
any of these
buttons and
place them on
the queue
view.
249

2 To add buttons that apply to other queues, display the GQM Views palette of
buttons:

a In Administrator mode, choose Main Menu > Get Workspace > GQMV-
TOP-LEVEL.

b Click the GQM Views Palette button to display this workspace:

3 Clone the desired button from one of these two palettes and place it in the
toolbar area of the default queue view. For information about moving buttons,
see Moving Toolbar Buttons.

4 Move the other buttons to a new location, as needed.

When you are finished configuring the queue view, click on the background of
the layout to display the KB Workspace menu, then select Finished Configuration,
at the bottom of the menu choices.

If you add buttons, they do not get removed if you choose Cancel Configuration.

You can clone
any of the
circled buttons
and place
them on the
queue view.
250

Configuring a Queue View Template
Modifying Button Attributes

You can configure attributes for three buttons on the built-in queue view toolbar.
The other buttons have no configurable attributes.

To modify a button attribute:

1 Click the button whose attribute you want to configure and choose the
configure button menu choice.

2 Edit the attribute in the dialog that appears, then press OK or Apply.

3 To apply the edits, click on the background of the template and choose
Finished Configuration from the KB Workspace menu.

Button Attribute Description

View Details Detail View
Template

The View Details button displays information
about the selected queue entry on a detail view,
defined by the detail view template.

This attribute specifies the name of the template the
queue uses for the detail view. The default for the
Alarm Queue is gda-alarm-detail-view-template.
The default for the Error Queue, Explanation
Queue, and Message Queue is gqmv-default-detail-
view-template. Both are instances of the class gqmv-
detail-view-template.

Go to Source Highlight
Procedure

The name of the procedure that determines the
action that occurs when the user selects an entry
and clicks the Go to Source button. The default is
gqsv-highlight-item, which displays the workspace
of the source and places a flashing arrow next to the
source for 10 seconds. If the source does not appear
on a workspace, the procedure does nothing.

For information on customizing this procedure, see
the GDA API Reference.

Remove
Entries
(Alarm
Queue only)

Acknowledge
Selected
Entries

Whether or not to acknowledge selected Alarm
Queue entries when removing them. The default is
no, which means the user must acknowledge
selected entries as a separate action by clicking the
Acknowledge Entries button. Set to yes to
acknowledge and remove entries in a single step.

If you set this attribute to yes, you might consider
removing the Acknowledge button from the
toolbar, as described in Deleting Toolbar Buttons.
251

To cancel the edits, click on the background of the template and choose
Cancel Configuration from the KB Workspace menu.

Creating and Customizing Buttons

This section provides the name and class of each button on the queue view and
the detail view.

To customize an existing button, override one of the public methods, as described
in the GDA API Reference.

Queue View Button Classes

This table indicates the class of which each detail view button is an instance:

All of the above classes are subclasses of the gqsv-toolbar-button class. Mouse
tracking is enabled for the gqsv-toolbar-button subclasses. If you create a new

This button... Is an instance of this class...

Acknowledge gqsv-acknowledge-button

Activate Filters gqsv-activate-filters

Clear View gda-clear-alarm-entries-button
(on Alarm Queue)

gqmv-clear-entries-button
(on other queues)

Close View gqmv-close-queue-view-button

Go To Source gqmv-go-to-source-button

Lock View gqsv-lock-view-button

Remove Selected Entries gda-remove-alarm-entries-button
(on Alarm Queue)

gqsv-remove-item-button
(on other queues)

Save Selected gqmv-save-selected-button

Select Filters gqsv-select-filters-button

Send Entries gqsv-send-entry-button

Sort Order gqsv-sort-order-button

View Message gqmv-view-entry-details-button
252

Configuring a Queue View Template
class from this class or a subclass of it, the new button will behave properly when
the user clicks the button. If you create a button that does not inherit from this
class, you will need to write your own mouse tracking procedure.

Detail View Button Classes

This table indicates the class of which each detail view button is an instance:

All of the above classes are subclasses of the gqmv-action-button class. Mouse
tracking is enabled for all gqmv-action-button subclasses. If you create a new class
from this class or a subclass of it, the new button will behave properly when the
user clicks the button. If you create a button that does not inherit from this class,
you will need to write your own mouse tracking procedure.

Modifying the Queue Entry Counters

The default queue view has two queue entry counters:

• The view entry counter, which indicates the number of entries that are
currently visible in the queue view. The Gqmv-count-id attribute determines
what this counter indicates; for the view entry counter, its value is view-count.

• The total entry counter, which indicates the total number of entries in the
queue when the number of entries in the view is different than the number in
the queue. If no entries are filtered out when the filters are activated, this
counter does not appear. The Gqmv-count-id attribute determines what this
counter indicates; for the view entry counter, its value is queue-count.

You can modify the position, size, and color of these counters.

This button... Is an instance of this class...

Add Comments gqmv-add-comment-button

Close Subview gqmv-close-view-button

Save Subview gqmv-save-subview-button

Update & View Explanation gda-update-explanation-button

View Advice gqmv-view-advice-button

View Comments gqmv-view-comments-button

View Explanations gda-view-explanation-button

View History gda-view-history-button

View Message gqmv-view-message-button
253

You cannot undo changes you make to these counters by choosing Cancel
Configuration from the queue view menu.

To modify the queue entry counters:

1 To modify the position of a counter, drag the counter to a new location on the
view.

2 To modify the size of the counters, click the border around the counter and
choose change min size, drag the edges of the black box to define its new size,
then click Update Now or Yes.

3 To modify the color of a counter, click the border around the counter and
choose color, then choose background-color, border-color, or text-color to
configure these colors.

This figure shows the result of modifying the view and total entry counters of an
Alarm Queue view:

Modifying Columns

You can modify these characteristics of columns:

• The columns that appear in the view

• The order of the columns

• The font used to display the text in the columns

• The background, text, and border colors of the column cells

• The number of rows visible in the view

• The height of each cell in a column

• The type of data that can be displayed in the column

• Whether cells can be selected or edited

View entry counter

Total entry counter
254

Configuring a Queue View Template
• Whether clicking on a column header sorts entries

• The procedure that validates a user-entered value

• Callback procedures that execute when a value is entered in a cell or when the
cell is selected

• How columns format floating point values, dates and times, and ordinal
numbers

To modify the column header label and contents, as well as other column header
attributes, see Modifying Column Headers.

Specifying the Columns that Appear in the View

You can determine which attributes are displayed in columns in the view by
adding or deleting columns.

To add a column to the view:

1 You can insert a new column before or after an existing column. Select the
column header of the column before or after which you want to add the new
column header to display its menu.

2 Select either add new column after or add new column before.

To delete a column from the view:

 Select the column header of the column you want to delete and choose delete
column.

Moving Columns in the View

You change the order in which columns appear by physically moving columns.

To move a column in the view:

1 While the pointer is on the column header of the column you want to move,
click and hold down the mouse button.

2 Drag the column header until it appears where you want the new location to
be.

3 Release the mouse button.

Changing the Number of Rows Visible in the Queue View

By default, the Alarm Queue and Error Queue display 3 rows, the Explanation
Queue displays 2 rows, and the Message Queue displays 5 rows.

To change the number of visible rows:

1 Click on any column cell and choose table.

2 Edit the Number of visible rows attribute.
255

Changing the Font Size of the Text Displayed in a Column

By default, the font size of the text in the column cells is small.

To change the font size of text displayed in a column:

1 Click on the header of the column whose font size you want to change and
choose table.

2 Edit the Font size attribute. You can define the font size as small, large, and
extra-large.

Changing the Column Color

By default, the background color of all column cells is white, the text color is black,
and the border color is black.

To change the colors of a column:

1 Click on a cell of the column whose colors you want to change and choose
table.

2 Edit the Default background color, Default text color, or Default border color
attribute by entering the name of a color. To obtain a list of available colors,
click the background of the view template and choose Color > background-
color, then specify one of these colors as a symbol, for example, forest-green
(colors consisting of more than one word separate the words with a hyphen).

Changing the Height and Width of Columns

You can adjust the height and width of columns (in pixels) by modifying column
and column header attributes. The default column height is 63 pixels.

To modify the height of all columns:

1 Click on any column cell (not column header) and choose table.

2 Edit the Cell-height attribute.

To modify the width of a column:

1 Click on the column header for the column you want to adjust and choose
table.

2 Edit the Width attribute.

Specifying Whether Clicking on a Column Header Sorts Entries

You can specify whether clicking on a column header causes entries to be sorted.
256

Configuring a Queue View Template
To specify whether clicking on a column header sorts entries:

1 Click on the column header for the column you want to control and choose
table.

2 Edit the Allow-click-to-sort attribute. The default is yes, which sorts the entries
when the user clicks on the column header.

Controlling the Type of Data Displayed in Columns

You can specify the type of data that a new column cell can display. For more
information, see the GDA API Reference.

Controlling the Format of Floating Point Numbers in a Column

All column cells format floating point numbers by providing an instance of a GXL-

FLOAT-FORMATTER as the value of the Float-format attribute of the column. You can
customize these aspects of floating point numbers:

• Whether default formatting is used

• The minimum number of characters in the formatted numbers

• The number of significant digits, or the number of decimal places

• How the value is represented

• Whether to display zeros to the right of the last nonzero digit

For more information about this object and its attributes, see the G2 XL Spreadsheet
User’s Guide.

To configure the float formatter for a column:

1 Click any cell in the column whose float formatter you want to configure and
choose table.

2 Click on the Float-format attribute and choose subtable.

3 Edit the attributes of the subtable according to the table above.

By default, all cells that show floating point numbers remove the trailing zeros
and show 4 decimal places.

Determining Whether a User Can Edit Data in a Column

You can control whether users can enter data into column cells.

To specify whether a user can edit values in the column cells:

1 Click any cell in the column you want to control and choose table.

2 Click on the Cells are editable attribute and modify its value. The default is
false, which means that the end user cannot edit the values in the cells.
Editing the value in a cell modifies the current queue entry.
257

Controlling Whether a Column Cell Can Be Selected

You can specify whether or not the user can select a cell in the column. The
default value is true, which means that users can select the cell.

To specify whether a column cell can be selected:

1 Click the cell in the column you want to control and choose table.

2 Click on the Cells are selectable attribute and modify its value.

Formatting the Contents of a Column

The Key-value-conversion-procedure attribute is a procedure that formats the
contents of the selected column. This table describes the procedures supplied with
GDA for the attribute and indicates which column headers use them as their
default:

To customize the conversion procedure for a column header:

1 Define a procedure with the desired behavior that has this signature:

my-conversion-procedure
(item: class item, attribute: symbol)
-> (value: value)

Procedure Description

gdl-get-time-
attribute-value

This procedure is the default value for the Time
column in all queues.

Converts a timestamp to a date-time format using
the Date-time Format attribute, as described in
Configuring Date and Time Formatting.

gqsv-get-attribute-
value

This procedure is the default value for the
Severity and Alarm Message columns in the
Alarm Queue, and the Message Text column in all
other queues.

Displays the value of the queue entry attribute as
text.

gda-format-
acknowledged

This procedure is the default value for the Ack
(Acknowledged) column in the Alarm Queue.

Formats the value of the Acknowledged attribute
of a gda-alarm-entry. A value of false causes the
Ack column to be blank when an alarm is not
acknowledged. A value of true displays Yes in the
column.
258

Configuring a Queue View Template
2 Specify your procedure as the Key-value-conversion-procedure when
configuring attributes for any column header in any default queue view.

Configuring Date and Time Formatting

You can configure the date and time formats used to display timestamps.

By default, all queues format date and time attributes as follows:

GDA uses the date-time format when:

• Displaying these queue entry attributes in the queue:

– Gqm-creation-time

– Gda-acknowledge-time

• Writing queue entry data to a file, for example:

– Severity: 1 At: 09/09/1999 10:23:50

– CT: 09/09/1999 10:23:50

GDA uses the date format and time format when writing queue entries to a file.
For example:

Argument Description

item The queue entry whose column
header data is to be converted.

attribute The queue entry attribute whose
data is to be converted.

Return Value Description

value The queue entry attribute data as it
is to appear in the queue.

Attribute Format Example

Date-Time Format <m2>/<d2>/<y4>
<h24>:<min>:<sec>

09/09/1999 16:23:50

Date Format <m2>/<d2>/<y4> 09/09/1999

Time Format <h24>:<min>:<sec> 16:23:50

File-Time Format <y2><m2><d2>-
<h24><min><sec>

990909-163323
259

Acknowledged on 09/09/1999 at 17:25:38
----- History -----
Entered alarm on 09/09/1999 at 17:25:33
Returned from alarm on 09/09/1999 at 17:25:55

GDA uses the file-time format for the default file name when saving queue entry
data and detail view data to a file, for example:

save-selected-990909-173323.text

This table lists and describes all date and time formats:

When specifying formats, the character that separates formats appears in the
displayed date/time. For example, <m2>/<y4> might display 12/1999.

Format Example

<d> Day

<d2> 2-digit day

<df> Full day name

<da> Abbreviated day name

<dor> Ordinal day

<m> Month

<m2> 2-digit month

<mf> Full month name

<ma> Abbreviated month name

<y2> 2-digit year

<y4> 4-digit year

<apm> A.M. or P.M.

<h12> Hour (12-hour clock)

<h24> Hour (24-hour clock)

<min> Minute

<sec> Second
260

Configuring a Queue View Template
To configure the date and time formats:

1 Choose Preferences > Queues > General Settings to display this dialog:

2 Configure the date and time attributes as described in the tables above.

Configuring Ordination

By default, the queues format numbers as ordinal text by using the gqm-default-
ordination procedure, which results in this ordinal text:

1st, 2nd, 3rd, 4th, 5th, 6th, 7th, etc.

You can configure the procedure that gets used to format ordinals, for example, to
support internationalization.

To configure the ordination:

 Configure the Ordination Procedure attribute to name a custom procedure.

You can provide a custom procedure that gets called whenever the queue needs
to format an integer as ordinal text, for example, 1st, 2nd, 3rd, 4th, 5th, etc.
261

To customize the ordination procedure for the overall environment:

1 Define a procedure with the desired behavior that has this signature:

my-ordination-procedure
(number: integer)
-> (ordinal: text)

2 Specify your procedure as the Ordination-procedure when configuring
attributes for the overall environment. Choose Preferences > Queues >
General Settings to access the General Queue Settings dialog box.

Argument Description

number The integer to use as the base of
the ordinal text.

Return Value Description

ordinal The ordinal text.
262

Configuring a Queue View Template
Default Alarm Queue Color Formatter Procedures

The Dynamic-color-formatter attribute controls the colors of particular columns in
a queue view for an Alarm Queue. This table summarizes the procedures
supplied with GDA for the Dynamic-color-formatter attribute and describes which
column headers use them as their default:

To customize the color formatter procedure for a column header:

1 Define a procedure with the desired behavior that has this signature:

my-color-formatter-procedure
(entry: class gda-alarm-entry, attribute: symbol)
-> (background-color: symbol,

border-color: symbol,
text-color: symbol)

Procedure Description

gda-color-entry-by-
severity

This procedure is the default value for the Time,
Severity, and Alarm Message columns in the
Alarm Queue. The value of this attribute for
columns in all other queues is unspecified.

When an alarm entry is active, this procedure
colors the cells of the column according to the
severity; otherwise, it colors the cells using the
default colors.

When an alarm entry is not active, this procedure
colors the cells white.

You can change the color settings by choosing
Preferences > Colors > Alarms and selecting
colors on the dialog box.

gda-color-entry-by-
acknowledgement

This procedure is the default value for the
Acknowledged column in the Alarm Queue.

When the alarm has not been acknowledged, this
procedure colors the cells cyan. If the alarm has
been acknowledged, it colors the cells using the
default colors.
263

2 Specify your procedure as the Dynamic-color-formatter when configuring
attributes for any column header in any default queue view.

Modifying Column Headers

You can configure various characteristics of column headers, including the header
label text, font size, or colors, to modify characteristics of the column headers and
of the data contained in the columns. You can also specify whether a column
value is to be monitored.

Specifying the Attribute to Display in the Column

To specify the attribute to display in the column:

1 Click on the header you want to modify and choose table.

2 Choose Attribute-or-key and specify the attribute name. The default value is
unspecified.

For a list of available queue entry attributes, see the tables in Creating a
Temporary Filter.

Modifying the Header Label Text

To modify the text of the header label:

1 Click on the header you want to modify and choose table.

2 Choose Visible-label and edit the label.

Argument Description

entry The queue entry whose cell color is
to be formatted.

attribute The queue entry attribute whose
cell color is to be formatted.

Return Value Description

background-color The background color of the cell.

border-color The border color of the cell.

text-color The text color of the cell.
264

Configuring a Queue View Template
Modifying the Font Size of the Label

To modify the font size of the label:

1 Click on the header you want to modify and choose table.

2 Choose Font-size and edit the label.

Modifying Colors of the Label

You can modify the color of the label text, background, and borders.

To modify the colors of the label:

1 Click on the header you want to modify and choose table.

2 Choose Default background color, Default text color, or Default border color
and edit the color by entering the name of the color.

To obtain a list of available colors, click the background of the view and choose
Color > background-color, then specify one of these colors as a symbol, for
example, forest-green. Colors made up of more than one word use hyphens
between the words.

Monitoring a Column Value

You can write a procedure that monitors the value in a column. Each column
header has an attribute that specifies whether the value of the column is to be
monitored. For new columns added to the view layout, the value of this attribute
is yes. In general, the value should be yes only for columns whose values can
change.

To indicate that a column value is to be monitored:

1 Click on the header you want to modify and choose table.

2 The value of the Monitor-this-attribute attribute should be yes.

For more information, including how to indicate the name of the procedure that
monitors the attribute value, see the GDA API Reference.
265

Configuring the Detail View
The detail view of a queue appears when you select a queue entry and click the
Show Details button on the queue view, as described in Viewing the Details of an
Entry.

You can configure these aspects of the detail view:

• The default colors and size of the display area

• The default location and colors of the label

• The default position and scale when the detail view is launched

You cannot configure the buttons of the detail view.

Configuring the Detail View Template

The default detail view template for the Alarm Queue is gda-alarm-detail-view-
template, which generates a detail view that looks like this:
266

Configuring the Detail View
The default detail view template for the Error, Explanation, and Message Queues
is gqmv-default-detail-view-template, which generates a detail view that looks like
this (this figure shows detail for an error entry):

The detail view template is specified as the Detail view template attribute of the
View Details button. For more information about specifying this attribute, see
Modifying Button Attributes.

You can configure these aspects of the default detail view templates:

• The colors

• The size

• The label

To configure the detail view templates, you must be in Administrator mode.
267

Displaying the Default Detail View Templates

To display the default detail view templates:

1 Make sure you’re in Administrator mode.

2 To display the default detail view template for the Error Queue, the
Explanation Queue, or the Message Queue, display the GQM Views detail
view template:

a Choose Main Menu > Get Workspace > GQMV-TOP-LEVEL.

b Click the GQM Views Dialogs button to display this workspace:

3 Or, to display the default detail view template for the Alarm Queue:

a Choose Main Menu > Get Workspace > GDA-4.0. You can also use Inspect
to go to the Alarm Queue.

b Click the GDA Queues button and choose go to subworkspace.
268

Configuring the Detail View
c Click the Templates and Settings button to display this workspace:

4 For both templates, click the detail view template object to display its menu
and choose go to subworkspace.

You configure the detail view template colors, size, and label from this
subworkspace.

Configuring the Detail View Colors

The background color of the detail view controls the light-gray area of the view.
The foreground color controls the color of the view label (“Entry Details”) unless
the label color has been explicitly specified (its default text color is initially
defined as foreground-color).

To configure the detail view colors:

1 Click the grey background of the detail view and choose Color.

2 To modify the background color, choose background-color to display a palette
of colors from which to choose, then click a color.

3 To modify the foreground color, choose foreground-color and click a color.

4 To modify the detail area colors, click the white area of the detail and choose
color. Choose background-color, border-color, and/or text-color from the
menu to configure these colors in the same way. Do not configure the border
color because the border does not appear on the detail view.
269

Configuring the Detail View Size

You can change the size of the detail area, used to show the text of the detail.

To configure detail view size:

1 Click the white area of the detail and choose change min size.

2 Drag the edges of the black rectangle that appears to adjust the size of the
view, then click the Yes button.

3 Resize the detail view workspace by dragging the outside border corners.

Configuring the Detail View Label

You can modify the colors and position of the detail view label. The label is
initially “Entry Details,” but GDA changes its text depending on what it shows.
You can edit the detail view label text directly or by looking up the value in a local
text resource.

To configure the detail view label:

1 To modify the label colors, click the (invisible) border around the label and
choose color. You may need to try this several times to find the border. Choose
background-color, border-color, and/or text-color from the menu to configure
these colors of the label.

2 To modify the label location, drag the label to a new location.

3 To modify the label text, click the text and enter a new text value.

You can also localize the detail view label text by configuring a symbol to use
for looking up the label text in a local text resource.

4 To specify a label symbol, click the border around the label to display its
menu, choose table, and configure the gqmv-label-symbol attribute to specify
a label symbol.

The label symbol points to entries in the gqmv-local-text-resources text
resource. You can edit the text of the existing text resource or create new
entries and have the template’s label point to that.

Creating Your Own Detail View Template

You can create your own detail view template item to display different detail
views for the Error, Explanation, or Message Queues. You can also create your
own detail view template if you create a custom queue, as described in Creating a
New Queue.
270

Configuring the Detail View
To create your own detail view template:

1 Follows steps 1 or 2 under Displaying the Default Detail View Templates to
display the template you want to clone.

2 To clone the template, click the item and choose clone to attach it to the
mouse, then click on a workspace to place it.

3 Choose go to subworkspace on the cloned item and configure the detail view
as described in these sections:

• Configuring the Detail View Colors

• Configuring the Detail View Size

• Configuring the Detail View Label

Associating the Detail View with the View Details Button

The last step in creating a detail view is connecting the view with the View Details
toolbar button. To make this connection, you modify the Detail View Template
attribute of the button. For more information, see the table in Modifying Button
Attributes.

Configuring the Detail View Position and Scale

By default, the detail view is displayed in the middle of the window at full scale.

You can specify the position of the detail view workspace relative to the window
by configuring these attributes:

Attribute Description

Window X
Location

The X position of the window with respect to
which the detail view is positioned. The options
are: center, right, left, or the number of pixels, as
an integer.

Window Y
Location

The Y position of the window with respect to
which the detail view is positioned. The options
are: center, top, bottom, or the number of pixels,
as an integer.

Workspace X
Location

The X position of the workspace with respect to
the window position. The options are: center,
right, and left.

Workspace Y
Location

The Y position of the workspace with respect to
the window position. The options are: center, top,
and bottom.
271

You can configure the scale of the detail view by configuring these attributes:

To configure the position and scale of the detail view:

1 Choose Preferences > Queues > Buttons to display this workspace:

2 To specify the position of the detail view, configure the Window and
Workspace X and Y Location attributes according to the table above.

3 To specify the scale of the detail view, configure the X Scale and Y Scale
attributes according to the table above.

The attributes take effect the next time you display a detail view.

Attribute Description

X Scale The scale of the detail view along the X
dimension. For example, to display the detail at
half scale horizontally, specify 0.5.

Y Scale The scale of the detail view along the Y
dimension. For example, to display the detail at
half scale vertically, specify 0.5.
272

Creating and Configuring the Access Manager
This table provides a number of common combinations of the location attributes:

Creating and Configuring the Access Manager
An access manager specifies the template that defines the queue view for a
named user or window class accessing the application in a particular user mode.

If the application displays the contents of a queue using only one template, it is
not necessary to use an access manager. If, however, the application provides
more than one view for a particular queue, it is necessary to create and configure
an access table to indicate which users view the queue using which view
templates.

By specifying different combinations of user names or window classes, user
modes, and queue view templates, you can control how every application user

To position the
detail view in the... Configure the attributes like this...

Top-left corner of the
window

Window X Location = left
Window Y Location = top
Workspace X Location = right
Workspace Y Location = bottom

Top-right corner of the
window

Window X Location = right
Window Y Location = top
Workspace X Location = left
Workspace Y Location = bottom

Bottom-left corner of the
window

Window X Location = left
Window Y Location = bottom
Workspace X Location = right
Workspace Y Location = top

Bottom-right corner of
the window

Window X Location = right
Window Y Location = bottom
Workspace X Location = left
Workspace Y Location = top

Top-center of the
window

Window X Location = center
Window Y Location = top
Workspace X Location = center
Workspace Y Location = bottom

Left-center of the
window

Window X Location = left
Window Y Location = center
Workspace X Location = right
Workspace Y Location = center
273

accesses the queues. The access table and the ability to define multiple queue
views for a single queue enable you to manage access to the contents of all
queues, presenting to each user or category of user only the needed information.

For information on configuring a view template, see Configuring a Queue View
Template.

How the Access Manager Works

The access manager contains a sequenced list that associates a queue view
template with either a specified user name or window class, accessing the
application in a specified access mode.

This sample access table associates a queue view template with three different
users and a default template for all others:

The access manager determines which queue view template to use by following
this sequence of steps:

1 First, the access manager compares the name of the currently logged in user
with the user names in its list, starting with the user name specified in the top
row in the list.

2 If the currently logged in user appears in the list, the access manager then
compares the user mode for that user with the user mode for that user’s entry.
If the user is logged in to GDA in the user mode specified in the row for that
user, then the access manager uses the view template specified for the user.

3 If the currently logged in user does not appear in the list or if the user is
logged in to GDA in a different user mode (and no entry for that user mode is
274

Creating and Configuring the Access Manager
found in the table), then the access manager compares the current window
with the list of window classes in the table.

4 If the currently logged in user’s window appears in the list and the user is
logged in to GDA in the specified user mode, then the access manager uses
the template associated with this window.

5 If neither the user name nor the window class is found in the list, or if the user
mode is not satisfied for the current window, then the access manager signals
an error. (In the sample access table, the last row associates a view template
with all users not specifically addressed in the previous rows.)

Using the access table shown above, suppose the user maria logs in to GDA in
developer mode. The access manager looks for the user name maria, which it
finds. It then checks to see whether the user mode matches the mode maria is
accessing GDA. Because the modes match, it uses the all-alarms view template.

Suppose the user natasha logs in to GDA in developer mode. Because the access
manager does not include an entry for natasha, it uses the default alarm queue
template (specified in row 3), which associates the gda-default-alarm-queue-
template for all users not addressed by the other permission entries.

Specifying the Queue View Template or Access
Manager

Each queue has an attribute that specifies the queue view or access manager that
determines the queue view that presents the queue entries to application users.

By default, the value of this attribute is the built-in queue view template for the
queue. If you create a new template to provide an alternate queue view, you
should change the value of this attribute to be the new template name. If you
create more than one view for a particular queue and create an access manager to
associate users with queue views, you should change the value of the attribute to
be the access manager name.

This table indicates the default queue view template for each queue type:

In addition, the default Message Queue access manager allows users logging in to
any UI-CLIENT-ITEM, through either a classic Telewindows or Telewindows2 Toolkit

Queue Type Default Template

Alarm Queue gda-default-alarm-queue-view

Error Queue gdabasic-default-error-queue-view

Explanation Queue gda-default-explanation-queue-view

Message Queue gdabasic-default-message-queue-view
275

client, in any user mode, to access the Message Queue. When viewing queues
through a Telewindows2 Toolkit client, you must specify the default template to
use.

Creating an Access Manager

To define how users access a queue using one of the queue view templates
defined for the application, you must create an access manager.

To create an access manager and associate it with a queue:

1 Using Inspect, go to alarm-queue.

2 Click the GDA Queue Palette button to display this workspace:

3 Click the Queue Access Table item to attach a new instance to the cursor, then
move the item into a workspace.

4 Click the new instance and choose name to name the new access manager.

5 Click the queue item you want to associate with the new access manager and
choose table. This queue can be one of the built-in queues or a new queue.

For example, to associate my-access-table with a new Alarm Queue you
created, called my-alarm-queue, display the table for that queue.

6 Edit the Gqs-view-template-or-access-table attribute value to be the name of
the new access manager.
276

Creating and Configuring the Access Manager
Configuring an Access Manager

You can configure a new access manager to:

• Specify the default template used to create the queue view for users logging in
to GDA from any G2 window in any user mode.

• Define additional entries in the access table to specify custom templates used
to create the queue view for different users or users accessing the application
in different user modes.

To configure an access manager:

1 Display the workspace that contains the access manager item.

2 Click the access table, then choose configure access table. This is the default
access table:

3 To edit the default settings, click the cell to edit, edit its value, then press
Enter.

4 To delete the default settings, select the row by clicking on its left-most
column, then click the Delete Selected Rows button .

5 To add a new entry after a row in the table, select the row, click the Insert Row
After Selection button to add a new row to the spreadsheet, then edit
the cell values.

The order in which the rows appear is significant. When the access manager uses
the table to determine which template to use for the queue view, it checks entries
starting with the first row (row 0), moving through the rows until the last entry.
277

The Access Manager Toolbar Buttons

The access manager provides these toolbar buttons:

This table describes how the toolbar buttons modify the access table:

This toolbar button... Performs this function...

Load from File into
Selection

Replaces the selected rows of the table with
the contents of the file. The default file name is
the file name most recently used with the Save
selection to file button.

Save Selection to File Saves the selected rows to a file. A dialog
requests the file name. The default directory is
the directory from which the application is
run.

Insert Row Above
Selection

Inserts an empty row before the selected row.
Use this button to create a new row before the
selected row.

Insert Row After
Selection

Inserts an empty row after the selected row.
Use this button to create a new row after the
selected row.

Delete Selected Rows Deletes the selected rows.

Sort Rows of Selection
in Ascending Order

Sorts the selected rows in ascending order.
The sort column is the User Name or Window
Class column.

Sort Rows of Selection
in Descending Order

Sorts the selected rows in descending order.
The sort column is the User Name or Window
Class column.

Cut Selection Deletes the selected rows. Use the Paste
contents of clipboard button to paste them
into the table.

Copy Selection to
Clipboard

Copies the selected rows. Use the Paste
contents of clipboard button to paste them
into the table.
278

Creating and Configuring the Access Manager
Paste Contents of
Clipboard

Pastes the deleted or copied rows into the
table, replacing the currently selected rows.

Undo the Last
Operation

Returns the table to its state before the
previous operation. You can only undo the
last operation.

This toolbar button... Performs this function...
279

280

Glossary
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
A

action block: Performs actions on other blocks or on the environment when an
inference value becomes true.

action link: Serves as a pointer when a block is to perform an action on a target
object. For example, you can reset a block by using a control signal by attaching
any block to the action link associated with the Reset block. When the block
receives a control signal, GDA resets the block. Action links appear on many
blocks on the Action menu.

alarm: Indicates the source of potential problems in the real-time data that the
diagram is monitoring. GDA displays alarms in the Alarm Queue.

API procedure: When you are creating custom subclasses of custom blocks,
statements in the block evaluator procedure call Application Programmers
Interface (API) procedures that:

• Set values onto a path and trigger the evaluation of downstream blocks.

• Set values onto a path without triggering the evaluation of downstream
blocks.

• Obtain values from a path.

• Resolve output path attributes for custom blocks.

attributes: Specify the particular behavior of a block. You specify block attributes
in the configuration panel.

B

block evaluator: Executes when a custom block receives a value on its input
path(s). GDA supplies a template for the block evaluator, based on the input and
output stubs and the type of block. You specify in the custom portion of the
procedure.

block menu: Enables you to perform G2 operations on blocks, such as cloning,
transferring, deleting, and configuring.
281

C

capability link: Adds various types of features to blocks, such as charts, graphs,
and clocks.

configuration panel: A dialog that enables you to specify the attributes of a block.

configure: To specify the attributes of a block in a configuration panel or in the
attribute display of a block.

connection post: Enables a block on one workspace to pass data to a block on
another workspace.

control path: A type of path that passes control signals, which cause downstream
blocks to execute.

custom block: A subclass of GDA block that executes custom G2 procedures.
There are three basic types of custom blocks:

• General - performs calculations on single or multiple inputs when the block
needs to reference specific inputs by port name.

• Peer Input - performs calculations on single or multiple inputs when the block
treats all inputs equally.

• Multiple Invocations - enables control over how the block processes
simultaneous control signals.

Custom Class Wizard: Creates new subclasses of GDA blocks and edits existing
subclasses. Each instance of a custom subclass inherits the definition of an
existing GDA custom class or a custom block subclass.

D

data block: Operates on numeric, textual, or symbolic values.

data path: An input or output path to a block that contains numeric, textual, or
symbolic values.

description: An attribute of certain inference blocks that enables you to describe
the current output value and provide advice to operators. For example, if the
inference block passes .true, the description might be the temperature is too high.

developer mode: A user mode that provides access to all the basic functionality
required for building schematic diagrams.

disable evaluation: Stops a block from passing its output value and responding
to new values. Disabling evaluation enables you to “turn off” entire portions of a
GDA diagram.

discrete logic: A form of inferencing whereby a block passes discrete inference
values, for example, a Status-value of .true, .false, or unknown, and a Belief-value
of 1.0, 0.0, or 0.5. See also fuzzy logic.
282

E

enable data input: To run a diagram, you must enable data input, which:

• Starts data flowing into entry points.

• Evaluates signal generators.

• Evaluates clock capabilities.

enable evaluation: Allows a block to pass its output value and respond to new
values.

encapsulation block: Enables you to hide complexity in a GDA diagram by
placing a portion of the diagram on a subworkspace. There are two types:

• Single Source Encapsulation blocks enable you to create multiple instances of
the encapsulation block when you need to propagate changes in the definition
of the encapsulation to other blocks in the diagram.

• Simple Encapsulation blocks are the same except that you cannot propagate
the changes in the definition to other blocks in the diagram.

entry point: Receives data externally from a variable, a GSI (G2 Standard
Interface) variable, G2 procedure, or from an embedded variable in the table for
the block. Entry points are the starting point of a GDA diagram. GDA supports
five kinds of entry points: numeric, text, symbolic, belief, and control.

evaluate: To execute the procedure for a block. For example, when you evaluate
an entry point, the current value is propagated with a new timestamp. When you
evaluate a block with a single input control path, the block acts as if it has
received a new control signal.

explanation: Provides a description of the combination of upstream blocks that
resulted in the current output inference value of certain blocks.

F

filter: A category of block that you use after data entry blocks in a diagram to
filter out noise and find trends in data. GDA supports six kinds of filters:
changeband, outlier, first-order exponential, nonlinear exponential, quadratic,
and cubic.

fuzzy logic: A form of inferencing whereby a block passes a range of values, for
example, a Status-value of .true, .false, or unknown, and a Belief-value that is a
number between 0.0 and 1.0, where 0.0 is completely false and 1.0 is completely
true.
283

G

G2 Main Menu: Controls whether G2 is running or paused, and allows you to
load and save applications.

G2 menus: Provide all the functionality of G2 within the GDA environment, for
example, the creation of class definitions, variables, parameters, rules, and
procedures.

H

history: A store of past input values. Numerous GDA blocks operate on the
stored values, such as computing the average of the last 25 input values.

HTML: Hypertext Markup Language. Online documentation is a collection of
HTML files, which you can display in any HTML browser.

hysteresis: Passes the previous value in a condition block if the current changes
are small. For example, if the belief value of a block whose Output Uncertainty is
0.5 changes from 0.8 (.true) to 0.7 (unknown), the block will continue to pass .true
if the Hysteresis When attribute is set to .true.

I

inference block: Translates data values to truth values and operates on truth
values, including fuzzy truth values. For example, observations observe data
values and pass inference values, and logic gates use Boolean logic to combine
reference values.

inference path: A type of path that carries truth values. Inference paths carry two
values:

• Belief value - a number between 0.0 to 1.0, where 0.0 iscompletely false and 1.
0 iscompletely true.

• Status value - one of the symbols .true, .false, or unknown. GDA derives
status values from belief values.

initial value: The value a block passes when you first start G2 or when you reset
the block.

input port: Carries data to a block. A block has one or more input ports
depending on the type of block.
284

invoke: To execute the procedure for a block. GDA invokes a block when:

• An entry point receives a value from its data source.

• A value is propagated onto the input path of the block due to the behavior of
an upstream block.

• You evaluate a block manually.

item path: A type of path that passes any G2 item through the block. Use item
paths with custom blocks for:

• Discrete event processing, for example, processing individual items in an
assembly line.

• Complex data processing, for example, processing multiple items, using an
item list or item array.

K

KB Workspace menu: Enables you to create G2 definitions and objects on a
workspace and set up applications.

L

link: A special-purpose type of connection that you use to add features or
behaviors to a block, or to perform actions on a block. For example, you use links
to add a graph or chart capability to a block.

There are three types of links:

• Action

• Capability

• Restriction

lock: When locked, a block does not respond to input data or pass its output
values. GDA locks a block when you manually override its value.

M

message: GDA sends messages to the Message Queue when you use the Send
Message block.

multiple values: Simultaneous control signals that a block receives. A block can
ignore or use multiple values as needed.
285

N

no-value inputs: Occur when stubs are unattached or when connected paths
never receive a value. Peer input data blocks and peer input logic blocks ignore
input paths with a Quality of no-value. Non-peer input blocks require all of their
inputs to evaluate, and, therefore, never place a value onto an output path if the
block has a no-value input.

O

observation: A category of blocks that detect features in your data. Observation
blocks take data as input, test it against a threshold, and pass as output the
inference value that the test produced.

output port: Carries data from a block. A block has one or more output ports
depending on the type of block.

override: To manually change a block’s output value for testing purposes.
Overriding a block locks the block and propagates a Quality of manual onto the
output path.

P

parameter: A G2 object that stores a data value and keeps a history of it over a
specified time. A parameter can also initiate forward chaining.

path: The connection between two blocks. GDA supports data, inference, control,
and item paths.

path attributes: Attributes that provide information about the value and status of
the data on one path. Each type of path defines slightly different path attributes.

path quality: A path attribute that specifies the status of a path’s data. There are
three types:

• Manual

• No-value

• Expired

path splitter: Connects the input stub from one block to the path between two
other blocks so that more than one downstream block can get input from the same
upstream block.

peer input block: A category of block that can have any number of inputs and
does not evaluate the inputs in a specific order. The inputs are treated all alike
and are therefore peers.
286

port: Connection stub to which another stub can attach. Ports are either named or
unnamed, depending on the type of block and whether the port is input or
output.

Q

queue: A special workspace that displays information about alarms,
explanations, messages, and errors.

R

reset: Causes the following to happen:

• Sets the block to its initial state, which propagates the block’s initial value.

• Clears any error conditions.

• Unlocks the block, if it was locked.

• Erases the blocks history if the block maintains a history.

restriction link: Enables you to customize a block’s capabilities. You can
customize the override dialog and determine the source of input for a GDA
diagram.

S

signal generator: Generates a continuous signal to a diagram, to simulate real-
time data. Examples of signal generators include the Sine Wave signal and White
Noise signal.

snapshot: A file that contains the current state of the running application as
backup. You can configure GDA to take snapshots automatically at regular
intervals. When you restore a snapshot, GDA resumes running the application
from the point at which you took the snapshot.

Statistical Process Control (SPC): A category of block that uses statistical
methods to measure the quality and consistency of a process. The blocks in the
SPC palette contain statistical tests, pattern recognition techniques, and graphs.
An application that uses SPC monitors a process and compares current
performance with expected performance.

stub: A connection port to which another connection port can attach.

sweep: An internal mechanism where GDA searches for invoked blocks,
evaluates them, and continues until no more blocks are left to evaluate.

system administrator: A category of GDA users who works in Administrator
mode, which enables access to additional attributes and menu choices used for
debugging.
287

T

temporal logic: A type of inferencing that allows you to analyze the timing of
events.

top menu bar: Provides access to basic functionality, including controlling the
diagram, cloning blocks from palettes, accessing queues, and customizing the
environment.

U

uncertainty: Defines a band around 0.5 that determines the status value unknown.
For example, if the attribute Output Uncertainty is 0.25, then the Belief-value is .
true above 0.625 and .false below 0.375 and Unknown between .65 and .35.

user modes: There are four user modes:

• Administrator - enables system administrators to access attributes and menu
choices used for debugging.

• Developer - enables developers to access all the basic functionality used for
building schematic diagrams.

• User and Browser - enables end users to view diagrams, display menus, and
display configuration panels of objects but not to move blocks, clone blocks,
or edit attributes. Browser mode is slightly more restrictive than User mode.

V

variable: You use variables as starting points in a GDA diagram, either by
referring to the variable in an entry point, or by connecting blocks directly to the
variable. See also parameter.

vertex: An 90bend in the connection between blocks.
288

Index
Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
access manager

configuring
creating
definition
example
how it works
specifying
toolbar buttons

accessing view templates
Ack column, color
Ack column, formatting contents
Acknowledge button class
Acknowledge button, description
acknowledged attribute and filters
acknowledge-selected-entries attribute

modifying
of Remove Entries button

acknowledging alarms
acknowledging alarms, example
acquiring data
action button, making temporary filters

permanent
action link
actions
Activate Filter button class
Add Comments button class
Add Subworkspace Button menu item
adding

columns to queue view
comment to queue entry
comments to blocks
custom connections to custom subclass
queue entry to queue, callback
toolbar buttons

administrator mode
advice

definition
example with detail view
providing for alarms
viewing for alarms

advice attribute, evaluating expressions in
Alarm Colors dialog
alarm entries
expired
incremental logging of
time format of in log

alarm log entries
Alarm Message column, color
Alarm Message column, displaying value
Alarm Panels, customizing colors of
Alarm Queue

built-in view template
default queue view
detail view
example with selected entry
history
locking view
sorting, default sort order
using
workspace containing built-in

alarm-log-formatter attribute
alarms

acknowledging
advice, providing
advice, viewing
colors, customizing
explanation, viewing
tracebacks

Alarms menu item
network object default colors

aligning blocks to grid
allow other processing statement
allow-scheduled-drawing? parameter
Animate menu item
animation

disabling on startup
toggling

animation delay
appearance of diagram, improving
applications

animating
phases
planning
running
saving periodically
289

Index
top-level modules, renaming
workspaces, creating

Apply button
apply changes locally menu choice
Apply Filter button, description
applying filters
Asynchronous evaluation attribute
attribute displays
Attribute Editor dialog box
Attribute Filter item
attribute to display in column
attribute-or-key attribute
attributes

blocks
configuring using attribute displays
configuring using configuration dialogs
defining for custom blocks
evaluating expressions in
paths

attribute-update-callback attribute
autogenerate explanations attribute

configuring on queue
viewing explanations

automatic explanation attribute and viewing
explanations

B
backward-compatibility-features parameter
beep-for-new-entry attribute
belief-value path attribute

determining, using fuzzy logic
in inference paths

Block & Path Colors dialog, block colors
Block & Path Colors dialog, path colors
block evaluation engine
block evaluator, editing
blocks

aligning with snap grid
attributes
cloning from palettes
colors and states
colors, customizing
commenting
connecting

general
peer input blocks
rules for
using path splitters
using vertices
290
customizing block evaluators
deleting
disconnecting paths between
errors, clearing
errors, viewing in table
evaluation, enabling and disabling
evaluation, manual
inhibiting data flow through
invoking
locking manually
naming
notes, viewing in table
number of, in allow other processing

statement
overriding manually
overview of
resetting manually
searching for
tables for
unlocking manually

Blocks & Paths menu item
customizing block colors
customizing path colors

broadcast attribute menu choice
building diagram
button classes

detail view
queue view

C
call function, evaluating in attributes
call procedure, evaluating in attributes
callbacks

attribute update
item addition
item removal

Cancel button
cancel diagram editing menu choice
capability link
cause of error or alarm
cells-are-selectable attribute
changing modes
chart name attribute, evaluating expressions in
classes of detail view buttons
classes of queue view buttons
clear error menu item for blocks
Clear View button class
Clear View button, description
clearing block errors

Index
clone menu item
cloning

blocks from palettes
custom blocks
existing blocks

Close Subview button class
Close View button class
collection time path attribute

definition
in data paths
in inference paths
resolving for peer input blocks

color formatter procedure
colors

Ack column
Alarm Message column
alarms, customizing
blocks, customizing
column header, modifying
column, modifying
customizing in configuration dialogs
customizing in networks
detail view label, modifying
detail view, modifying
inference paths, behavior
paths, customizing
queue view
Severity column
Time column

colors-on-1st-level-color-menu parameter
column cells, editing values in
column cells, selecting
column headers

color, modifying
conversion procedure
font size, modifying
label text, modifying

columns
adding to queue view
colors, modifying
deleting from queue view
displaying attributes in
float formatter
formatting contents
height, modifying
modifying
moving in queue view
queue view
sort order, changing
sorting on
sorting, attributes that control
values, monitoring
width, modifying

comments
adding to blocks
adding to queue entry
definition for queues
queue entry, saving
showing for blocks
viewing for queue entry

comments attribute
compilation of workspace
configuration dialogs

customizing colors of
displaying

Configuration Panels menu item
configure menu item
configure tabular view menu item, queue view

layout
configuring

access manager
attributes
custom blocks
date and time formats
detail view
function key for Find Block menu item
layout for queue view
Queue Message block
queues
queues in a queue class
specific queue
view templates

confirm-deletions attribute
connecting

links to blocks
remote processes
to external data
workspaces using connection posts

connection path regions, customizing
connection posts

highlighting
using

connection-caching-enabled? parameter
connections

creating between blocks
creating for peer input blocks
deleting
illegal
path splitters

constrain moving clause
control paths

initializing
291

Index
multiple signals for
overriding
using

controlling flow of data
conversion procedure for column header
converting timestamp format
Copy Selection to Clipboard button
creating

access manager
application workspaces
buttons
detail view template
filters, permanent
filters, temporary
item paths
log file
queue views
queues
sensors
stubs for custom blocks
subclasses for custom blocks
view templates

creating new menu preference objects
current explanation menu item

generating explanation
inference block output value

custom blocks
applying class definition for
attributes
block evaluators
class names
cloning
configuring
connection stubs
creating custom path connections
creating subclasses of
creating using wizard
deleting subclasses
editing block evaluators
editing subclasses
icons
input path values
modules
output path attributes
palettes, reconfiguring
palettes, specifying
setting output path values

Custom Class Wizard Activity Selector dialog
box

custom connections, adding to custom
subclass
292
customer support services
customizing

alarm colors
block colors
buttons
configuration dialog colors
menus
network colors

Cut Selection button

D
data

acquisition
controlling flow
editing in column cells
inferencing

data coercion
using variables and parameters as input
using variables and parameters as output

data expiration
data flow, inhibiting through block
data input, disabling
data input, enabling
data paths

initializing
overriding

data seeking, setting timeout
data server attribute

sensors
variables
variables, values

data sources, of variables
data value attribute, in data paths
data values, overriding manually
date and time formats, configuring
date and time formats, table of
date-format attribute
date-time-format attribute
default menu preferences, how GDA manages
default-priority attribute
Define New Filter dialog box
delete block menu item
delete palette menu item
delete path menu item
Delete Selected Rows button
deleting

blocks
columns from queue view
custom block subclasses

Index
entries, confirming
filters
paths
stubs
toolbar buttons

Descriptions dialog for explanations
detail view

associating with View Details button
button classes
colors, modifying
configuring
default template, displaying
functions provided by
label colors, modifying
label position, modifying
position and scale
showing
size, modifying
template, creating
template, example
toolbar buttons

details, viewing for queue entry
detail-view-template attribute, modifying
developer mode
diagrams

building
executing
improving appearance
labeling

disable evaluation menu item, blocks
disable evaluation menu item, workspaces
disable G2 menu item vs disabling evaluation
Disable workspace menu item
disabling

animation on startup
data input
evaluation of blocks
logging

discrete logic
displaying

attributes
custom block evaluators
value on path

display-messages attribute
do not highlight menu item

connection posts
paths

dynamic-color-formatter attribute
E
edit master diagram menu choice
Enable Data Input menu item

disabling data input
enabling data input

enable evaluation menu item, blocks
enable evaluation menu item, workspaces
enable G2 menu item vs enabling evaluation
enabling

data input
evaluation of blocks
logging

encapsulation block and evaluation
encapsulation blocks, definition
encapsulations, single source
entry point invocations
entry points, evaluating Name of Sensor, using

an expression
entry-class attribute
entry-lifetime attribute
entry-limit attribute
Environment menu item

animation delay
data expiration and block evaluation
Find Block key binding
maximum timeout for data seeking
number of blocks with allow other

processing statement
snap grid resolution

erase history when reset attribute
behavior
resetting

error attribute
error log entries
error message, traceback of
error message, viewing details
Error Queue

built-in view template
built-in, workspace containing
default queue view
sorting, default sort order
using

errors
clearing
default color
resetting

evaluate menu item
evaluating blocks

enabling and disabling evaluation
manually
293

Index
evaluation engine
evaluators, editing for custom subclass
example

access manager
acknowledging alarm
advice for alarm
Alarm Queue with selected entry
filtering alarm entries
locking queue view
require-acknowledgement attribute

executing diagrams
exit if attribute, evaluating expressions in
expected value attribute, evaluating

expressions in
expiration time path attribute

in data paths
in inference paths
peer input blocks
Validity Interval

expired alarm entry
expired inputs
expired quality
explain alarm menu item
explanation log entries
explanation of last false menu item
explanation of last true menu item
explanation of last unknown menu item
Explanation Queue

showing inference block output value
sorting, default sort order
using
view template, built-in
workspace containing built-in

explanations
alarm, viewing
concatenating text in
configuring to generate automatically
current, viewing
displaying current, blocks
generating automatically
generating current, logic gates
generating manually
generating, in general
queue entry, viewing
specifying

expressions
evaluating in attributes
using G2

extending main menu items
external data, connecting to using variables

and parameters
294
external datasource attribute, evaluating
expressions in

F
F2 key, find block
false, changing color of
file-time-format attribute
filtering

hysteresis
inference path values
queue entries

filters
applying
attributes of
deleting
example with alarm entries
names, number of characters in
operators in definitions of
permanent, creating
permanent, from temporary
queue entry attributes used with
temporary, creating
temporary, making permanent

Find Block menu item
float variables and parameters
float-format attribute
font size of column headers, modifying
font size of queue entries
font size queue view attribute
font-for-attribute-tables parameter
Fonts menu item
fonts, changing defaults for text
formats

date and time, configuring
date and time, table of
floating point numbers in column
time in alarm log entries

formatting column contents
forward chaining

example
initiating

free text, labeling diagrams
full history
function, evaluating in attributes
functions in attributes
fuzzy belief values
fuzzy inference values, overriding
fuzzy logic

attributes

Index
hysteresis
uncertainty

G
GDA

block evaluation engine
loading

GDA menu item
gda-acknowledge-time attribute

displaying value
filters

gda-alarm-detail-view-template
gda-alarm-queue class
gdaapps KB, loading
gdaapps top-level module
gdaapps.kb initial loading
gda-color-entry-by-acknowledgement

procedure
gda-color-entry-by-severity procedure
gda-format-acknowledged attribute
gda-menu-configuration menu preference

object
gda-require-acknowledgement attribute and

filters
gda-severity attribute and filters
gda-severity attribute, default sort column
gdl-custom-block class
gdl-custom-multiple-invocations-block class
gdl-custom-peer-input-block class
gdl-evaluate-block invoking block
gdl-filter-tag attribute and filters
gdl-get-time-attribute-value attribute
gdl-item-path class
gdl-simple-encapsulation class
gdl-single-source-encapsulation class
general custom block

definition
local name
reference information

General Queue Settings dialog box
General Settings menu item
generating explanations automatically
generating explanations manually
GFR, translating menu items
GMS

extending main menu items
menu bar

gms-default-configuration menu preference
object
Go to Source button
attribute, modifying
class
description
Message Queue

GQM Views module
GQM Views palette
gqm-creation-time attribute

default sort column
displaying value
filters

gqm-message-text attribute and filters
gqm-priority attribute and filters
gqm-queue class
gqmv-action-button class
gqmv-count-id attribute
gqmv-default-detail-view-template example
gqmv-default-detail-view-template, workspace

that contains
gqs-queue class
gqsv-get-attribute-value attribute
gqs-view-template-or-access-table attribute
gqsv-toolbar-button class
green, path color
GXL spreadsheets, using to edit data

H
height of columns, changing
hide diagram menu choice
hide name menu item
hierarchy of workspaces
highlight menu item, connection posts
highlight menu item, paths
highlighting

connection posts
paths

highlight-procedure attribute, modifying
history

definition (queues)
fixed sample time
limit, setting on queue
nonmonotonic values
partial
performance issues
performance issues, updating
point-based
point-based updates
propagating data
reset behavior
295

Index
sample time options
size of
time-based
time-based updates
values to maintain
viewing for alarms

history-limit attribute
hysteresis when attribute
hysteresis, definition

I
icons, creating for custom blocks
ignore-duplicate-list-element-error parameter

value
illegal connections
incremental logging of alarm entries
inference paths

colors and states
colors and status
filtering data on
filtering using hysteresis
fuzzy belief values, overriding
fuzzy belief values, using
initializing
overriding
overriding discrete

inference values, overriding manually
inhibiting data flow through block
initial-column-key-to-sort attribute
initializing path values
initial-margin-for-workspaces parameter
initial-sorting-order attribute
input attribute
input path values for custom blocks
input ports
Insert Row Above Selection button
Insert Row After Selection button
Inspect menu item
integer variables and parameters
invalid workspace
Invocations-running attribute
Invocations-waiting attribute
invoking block
item paths

creating
creating customized connections
displaying path items for
placing items onto interactively
placing items onto programmatically
296
item-addition-callback attribute
item-configuration attribute on workspace
item-removal-callback attribute

J
junction block

K
key-value-conversion-procedure attribute

L
labeling diagrams
labels, modifying
layout, configuring for queue view
lifetime of queue entry
limit of entries in queue
lines-per-row attribute
link, definition
links

action
capability
connecting to blocks
restriction

Load from File into Selection button
Load KB menu item, loading application
Load KB menu item, loading GDA
loading

application
GDA

Local Diagram, single source encapsulations
understanding
viewing

Lock block, inhibiting data flow through block
lock icon

on entry points
on variables and parameters

lock menu item
lock menu item, blocks
lock menu item, variables and parameters
Lock View button class
Lock View button, description
locking alarm queue view
locking alarm queue view, example
locking blocks

by overriding
manually

log file

Index
alarm log entries
creating new
error log entries
explanation log entries
header
message log entries
name and location of
name in header

logging queue entries
alarm log formatter
enabling and disabling

logic
discrete
fuzzy
type

logic attribute
logical variables and parameters

M
M override symbol on block icon
manual invocations
manual quality path attribute value
manual quality, when overriding blocks
Master Diagram, single source encapsulations

cancelling editing
editing
saving

locally
updating all instances

understanding
maximum data seeking timeout
menu items, translating
menu preference objects, creating new
menu preferences, how GDA manages the

default
menus

customizing
extending items
preferences

Menus menu item
creating menu preference
default menu preferences, using
deleting menu preference
displaying GMS menu bar diagrams
editing menu preference

message log entries
Message Queue

built-in view template
built-in, workspace containing
default queue view
sorting, default sort order
using

Message Queue view, Go to Source button
messages, sending to queues
milliseconds-to-sleep-when-idle parameter
minimum-scheduling-interval parameter
modes, changing
modes, definitions
modifying

button attributes
column colors
column header color
column header font size
column header text
column height
column width
columns in queue view
custom class definitions
data in column cells
detail view colors
detail view label colors
detail view label position
detail view size
evaluator of custom subclass
new queue views
number of rows in queue view
queue entry counters
queue entry font size
queue view colors
queue view labels

modules
about
renaming top-level

monitoring column values
monitor-this-attribute attribute
mouse tracking for detail view buttons
mouse tracking for queue view buttons
moving

columns in queue view
toolbar buttons

multiple control signals
multiple invocations attribute
Multiple Invocations attribute, Multiple

Invocations custom block
multiple invocations custom blocks

definition
local names
reference information

multiple queue views
297

Index
N
name menu item
name of sensor attribute, evaluating

expressions in
names, hiding
Network blocks
Network menu item
networks, customizing colors
New Free Text menu item
new menu preference objects, creating
new value prompt attribute, evaluating

expressions in
New Workspace menu item
nonmonotonic history data
non-peer input blocks
notes attribute
no-value quality

customizing path color of
how blocks use paths with
path attribute value

number-of-columns-on-1st-level-color-menu
parameter

O
OK button
ok quality
operators for filters
option 1 description attribute, evaluating

expressions in
option 2 description attribute, evaluating

expressions in
option 3 description attribute, evaluating

expressions in
ordination, configuring
output path attributes for custom blocks
output ports
output uncertainty attribute
override menu item, blocks
override menu item, variables and parameters
override text attribute, evaluating expressions

in
overriding

blocks
blocks manually
control paths
data paths
inference paths, discrete
inference paths, fuzzy
parameters manually
298
variables manually

P
paint-mode? parameter
palettes

creating for custom blocks
deleting for custom blocks
overview of

parameters
coercing data, when using as input
coercing data, when using as output
connecting to blocks
creating
overriding
overriding manually
types
using in diagrams

partial history
Paste Contents of Clipboard button
path attributes, peer input blocks, resolving
path attributes, using
path displays
path vertices, creating
paths

colors and types
colors, customizing
connecting using connection posts
connecting, for peer input blocks
connecting, general
control
customizing for custom blocks
data
deleting
displaying values of
highlighting
inference
initial values
item
links
peer input blocks
resetting
splitters
tables
using

peer input blocks
connecting
definition
no-value inputs
resolving path attributes for

Index
peer input custom blocks
definition
local names
reference information

performance issues, block history
permanent filters, creating
permanent filters, from temporary filters
phases of application
planning applications
ports
position

detail view
detail view label, modifying
queue entry counters

Post Global Initializer attribute
Post Global Resetter attribute
preferences, menus
preventing blocks from evaluating
procedure, evaluating in attributes
procedures

customizing for blocks
running at G2 startup
using in attributes

Q
quality hierarchy
quality path attribute

control paths
data paths
inference paths
peer input blocks
using
using no-value inputs

quantitative variables and parameters
Queue Access Table
queue entries

acknowledging and removing
adding, callback
beeping when posted to queue
class of
confirming deletion of
definition
details, viewing
displaying in queue
displaying message text
filters
font size, modifying
lifetime of
number of lines
recurring alarms
removing from queue view
removing, callback
reusing alarm entries
saving
saving details
sending to another queue
sorting attributes
sorting on queue view
source, showing
total in queue
updating attribute, callback
visible in view

queue entry counters
modifying
types

Queue Message block
Queue Message dialog box
queue view, definition
queue views

button classes
colors, modifying
creating
labels, modifying
locking
modifying new
multiple
removing entries from
unlocking

queues
configuring all in a class
configuring individual
creating
definition
displaying explanations
new, using
number of entries

R
recurring-entry-class attribute
red, path color
Remote G2 Process block, changing color
Remote Process menu item
remote process query timeout period
remote process retry period
remote processes, connecting to
Remove Entries button

acknowledge-selected-entries attribute
description
299

Index
modifying attribute
Remove Selected Entries button

class
removing

queue entries from queue view
queue entry from queue, callback

require full history attribute, path quality
require full history attribute, using
require-acknowledgement attribute
require-acknowledgement attribute, example
reset all blocks menu item, resetting blocks
reset all blocks menu item, resetting paths
Reset All Blocks menu item, running

procedure after
reset menu item, blocks
Reset menu item, caution
reset menu item, resetting blocks
reset path menu item
resetting blocks manually
resort-new-entries attribute
restriction link
Reuse Entry preference and alarm history
reuse-entry attribute
rows in queue view, changing number of
rule terminals, single source encapsulations
running application

S
save diagram menu choice
Save Entry button, description
Save Selected button class
Save Selection to File button
Save Subview button class
save-selected file name
saving

application periodically
queue entry
queue entry comments
queue entry details

scale of detail view
scheduling-mode parameter
searching for block
Select Filter dialog box
Select Filters button

class
description
filters, creating

selecting column cell
Send Entries button class
300
Send Entries button, description
sending entries to another queue
sending messages to queues
sensors

creating
using in applications

setting
animation delay
maximum timeout for data seeking
output path values for custom blocks
remote process query timeout period
remote process retry period
sweep interval

Setup Application Workspace menu item
severity

changing color of
Severity column, color
Severity column, displaying value
show item menu item
showing

comments for blocks
source of entry

simple encapsulation blocks, definition
single source encapsulation blocks

reference information
single source encapsulation blocks, definition
single source encapsulations

cancelling editing Master Diagram of
converting to
creating

instances of
subclasses of

displaying Local Diagram of
editing

block attributes of
Master Diagram of

Local Diagram of
Master Diagram of
restrictions when using
saving Master Diagram

locally
updating all instances

using with rule terminals
size of detail view, modifying
snap grid

limitations
Sort Entries button, description
sort order
Sort Order button class
sort order, changing

Index
Sort Rows of Selection in Ascending Order
button

Sort Rows of Selection in Descending Order
button

sorting entries
Alarm Queue, default sort order
configuring attributes for
Error Queue, default sort order
Explanation Queue, default sort order
Message Queue, default sort order
on queue view

source of entry, showing
splitters
spreadsheets, GXL
Start menu item, after reset
Start menu item, starting GDA
Startup menu item

disable animation on startup
enabling data input at startup
running procedure after reset
running procedure when starting G2

status on initialization attribute, resetting
status on initialization attribute, using
status value path attribute

determining for fuzzy logic
inference paths

strings, concatenating
stub tools, creating stubs for custom blocks
stubs

connecting blocks
creating for custom blocks
creating for peer input blocks
deleting
direction of flow

superior object, evaluating in attributes
sweep interval, setting
symbolic variables and parameters
system invocations
system table, use of

T
table block menu item
table path menu item
tables

block
paths

target attribute, evaluating expressions in
target variable attribute, evaluating

expressions in
Telewindows Toolkit client
temporary filters, creating
temporary filters, making permanent
text

concatenating
variables and parameters

Time column, color
time format of alarm log entries
time-format attribute
timeout for data seeking, setting
timestamp path attribute

control paths
data paths
inference paths
using

timestamp, converting format of
Toggle Snap Grid menu item
toggling animation
toolbar buttons

access manager
adding
creating
customizing
deleting
manipulating
modifying attributes
moving

top-level module, renaming
total entry counter
tracebacks for alarms and errors
translating menu items
true, changing color of
turning logging on and off

U
uncertainty, fuzzy logic
Undo the Last Operation button
uninterrupted-procedure-execution-limit

parameter
unknown, changing color of
unlock menu item, blocks
unlock menu item, for variables and

parameters
unlocking blocks

after overriding
by resetting

unlocking queue view
Update & View Explanation button class
updating queue entry, callback
301

Index
use expired inputs attribute
Use Expired Inputs attribute, Peer Input

custom block
use of system table
user mode
user modes in access manager
user names in access manager

V
validity interval attribute

determining expiration
values

value on initialization attribute
control paths
data paths
resetting

value on path, displaying
values, monitoring in column
variables

coercing data when using as input
coercing data when using as output
connecting to blocks
creating
data servers for
overriding manually
overriding, general
types
using in diagrams

vertices, creating in path connections
View Advice button class
View Comments button class
View Details button

associating with detail view
description
modifying attribute

view entry counter
View Explanations button class
View History button class
view local diagram menu choice
View Message (detail view) button class
View Message (queue view) button class
view template

Alarm Queue
definition
detail view, displaying
Error Queue
Explanation Queue
Message Queue
specifying default
302
view templates
accessing
creating
in access manager

view templates, configuring
viewing

alarm explanation
alarm history
current explanation
error message details
queue entry comments
queue entry details

W
when false attribute, evaluating expressions in
when true attribute, evaluating expressions in
when unknown attribute, evaluating

expressions in
when-to-allow-multiple-menus parameter
white, path color
width of columns, changing
window classes in access manager
window-x-location attribute
window-y-location attribute
workspace hierarchy
workspaces

connecting using connection posts
creating

workspace-x-location attribute
workspace-y-location attribute

X
x-scale attribute

Y
y-scale attribute

	Contents
	Preface
	About this Guide
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Basics of Using GDA
	Introduction
	Modes
	Planning the Application
	Using Modules
	The Phases of an Application
	Overview of Palettes and Blocks

	Starting to Use GDA
	Loading GDA the First Time
	Renaming the Top-Level Module
	Saving an Application
	Starting GDA with Your Application

	Using System Tables
	Parameters GDA Does Not Check at Startup
	Parameters GDA Checks at Startup

	Building a Diagram
	Some Important Practices
	Creating Application Workspaces
	Cloning Blocks
	Configuring Block Attributes
	Deleting Blocks
	Connecting Blocks
	Improving the Appearance of a Diagram
	Displaying a Block’s Table
	Displaying the Value on a Path

	Running an Application
	Running Your Own Procedure When You Start G2
	Controlling the Flow of Data in an Application
	Enabling and Disabling Evaluation of a Block
	Toggling Animation
	Allowing Other Processing
	Setting the Maximum Timeout for Data Seeking
	Connecting to Remote Processes

	Customizing Menus
	Using Menu Preferences
	Creating New Menu Preference Objects
	How GDA Manages the Default Menu Preferences
	Extending Main Menu Choices
	Translating Menu Choices

	Miscellaneous Features
	Setting Configuration Panel Colors
	Setting Network Colors

	Using Blocks and Paths
	Introduction
	Basic Block Behavior
	Reading Notes and Errors
	Adding Comments to a Block
	Resetting Blocks
	Evaluating Blocks
	Overriding Block Values
	Locking and Unlocking Blocks
	Enabling and Disabling Evaluation
	Clearing Block Errors
	Setting Block Colors
	Setting Alarm Colors

	Using Paths
	Using Data Paths
	Using Inference Paths
	Using Control Paths
	Using Item Paths
	Resetting Paths
	Using Links
	Using Connection Posts
	Highlighting Paths and Connection Posts
	Setting Path Colors

	Using Path Attributes
	The Quality Attribute
	The Timestamp Attribute
	The Collection-Time Attribute
	The Expiration-Time Attribute
	Determining How Blocks Use no-value Inputs
	Determining Output Path Attributes for Peer Input Blocks

	Creating Customized Path Connections
	Creating a New Connection Subclass
	Customizing the Connection Path Regions
	Adding Custom Connections to a Custom Subclass

	Specifying Initial Values
	Specifying an Initial Data Value
	Specifying an Initial Control Value
	Specifying an Initial Status Value

	Maintaining a History of Values
	How the History Feature Works
	Specifying the Size of the History
	Specifying When to Propagate Data
	Specifying What Happens to History Upon Reset
	Specifying What to Do With Partial History
	How GDA Handles Nonmonotonic Values

	Specifying How to Handle Multiple Values
	Specifying and Generating Explanations
	Specifying an Explanation
	Generating Explanations

	Specifying Fuzzy Logic Attributes
	Specifying the Type of Logic to Use
	Specifying Uncertainty
	Specifying Hysteresis

	Using Variables and Parameters
	Choosing the Type of Variable or Parameter
	Creating a Variable or Parameter
	Using Variables to Connect to External Data
	Creating a Sensor
	Connecting a Variable or Parameter to a Block
	Overriding Values of Variables and Parameters
	Coercing Data Using Variables and Parameters as Input
	Coercing Data Using Variables and Parameters as Output

	Evaluating Expressions in Attributes
	Using a G2 Expression
	Using a G2 Function or Procedure
	Examples

	Using the GXL Spreadsheet to Edit Data
	Understanding the GDA Block Evaluation Engine
	Invoking an Individual Block
	Executing Diagrams
	Evaluating Blocks on Individual Workspaces

	Using GDA Queues
	Introduction
	Summary of the Queue Features
	Using the Alarm Queue
	Filtering Queue Entries
	Sorting Entries
	Sending Entries to Another Queue
	Viewing the Details of an Entry
	Showing the Source of an Entry
	Acknowledging Alarms
	Saving a Queue Entry
	Removing Entries from the Queue View
	Locking the Alarm Queue View

	Using the Error Queue
	Using the Explanation Queue
	Using the Message Queue
	Sending Messages to Queues Using the Queue Message Block

	Custom Block Wizard
	Introduction
	Using the Custom Class Wizard
	Creating a New Custom Subclass
	Specifying the Class Name
	Customizing the Icon
	Customizing the Connection Stubs
	Customizing the Attributes
	Specifying the Palette and Module
	Applying the New Class Definition
	Cloning and Configuring the Custom Block

	Customizing the Block Evaluator
	Displaying the Block Evaluator
	Types of Custom Block Evaluators
	Editing the Block Evaluator Procedure
	Example Using the power-block Custom Block
	Declaring the Procedure Name and Arguments
	Declaring Input and Output Path Local Names
	Obtaining Input Path Values
	Determining Output Path Attributes for Custom Blocks
	Editing the Custom Portion of the Block Evaluator
	Setting Output Path Values

	Editing an Existing Custom Subclass
	Deleting an Existing Custom Subclass
	Custom Class Reference
	General
	Peer Input
	Configuring
	Multiple Invocations
	Single Source Encapsulation

	Creating and Configuring Queues
	Introduction
	Attributes of Queues You Can Modify
	Creating a New Queue
	Configuring a Queue
	Configuring Attributes that Handle New Entries
	Configuring Attributes that Handle Changes and Deletions to Entries
	Configuring Attributes that Handle Queue Capacity
	Configuring Attributes that Are Specific to Alarm Queues
	Using Tracebacks for Alarms and Errors

	Using a New Queue
	Logging Queue Entries
	Enabling and Disabling Alarm Logging
	Providing a Name and Location for the Log File
	When GDA Creates a New Log File
	Determining the Log File Header and Message Contents
	Customizing the Entry
	Incremental Logging of Alarm Entries
	The Time Format for Alarm Entries

	Creating Queue Views
	Introduction
	Characteristics of the Built-in Queue Views
	Creating a New Queue View Template
	Configuring a Queue View Template
	Configuring a Built-in Queue View
	Configuring a New Queue View
	Modifying Queue View Attributes on the Configure Dialog
	Configuring the Layout of a Queue View
	Modifying the Queue View Label
	Modifying Queue View Colors
	Manipulating Toolbar Buttons
	Creating and Customizing Buttons
	Modifying the Queue Entry Counters
	Modifying Columns
	Modifying Column Headers

	Configuring the Detail View
	Configuring the Detail View Template
	Configuring the Detail View Position and Scale

	Creating and Configuring the Access Manager
	How the Access Manager Works
	Specifying the Queue View Template or Access Manager
	Creating an Access Manager
	Configuring an Access Manager

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF005b57fa4e8e201c005b9ad88d2891cf62535370005d201d005d00204f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Euroscale Coated v2)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

